-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfedist_mlp_main.py
executable file
·488 lines (385 loc) · 17.1 KB
/
fedist_mlp_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader, Dataset
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from feature_extractors.feature_extractors import ResDenseConcat
from models.models import ServerMLP, DeviceMLP
from data_parsing.cifar10_data import CIFAR10Dataset
from data_parsing.cifar100_data import CIFAR100Dataset
from data_parsing.cubbirds_data_version2 import CUBBirdsDataset
from data_parsing.vggflowers_data import VGGFlowersDataset
from data_parsing.aircraft_data import AircraftDataset
from data_parsing.textures_data import TexturesDataset
from data_parsing.stanford_cars_data import StanfordCarsDataset
from data_parsing.dirichlet_sampler import *
from ist.partition import *
from models.proximal_sgd import ProximalOptimizer
from utils.plot import MetricTracker
from torchinfo import summary
from fvcore.nn import FlopCountAnalysis
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--gpu", type=int, required=True)
args = parser.parse_args()
GPU = args.gpu # Change depending on others' use of GPUS
dname = args.dataset
# Parameters
#parameters = [
# {"frac": 0.02,"loc": 1},
# {"frac": 0.02,"loc": 5},
# {"frac": 0.06,"loc": 1},
# {"frac": 0.06,"loc": 25}
#]
parameters = {
1000:[
{"frac": 0.02,"loc": 1},
{"frac": 0.02,"loc": 5},
{"frac": 0.06,"loc": 1},
{"frac": 0.06,"loc": 25}
],
100: [
#{"frac": 0.1,"loc": 1},
#{"frac": 0.1,"loc": 5},
{"frac": 0.1,"loc": 25},
#{"frac": 0.3,"loc": 1},
#{"frac": 0.3,"loc": 25}
]
}
USERS=100 # Number of users
parameters = parameters[USERS]
#FRAC=[0.1,0.3] # Fraction of users to report
DIRIC=[0.01]
#DIRIC=[0.01] # Dirichlet parameter
LR=[0.01]
EPOCHS=4000
#LOCAL_EPOCHS=[1, 5, 25]
BS=32 # Initial batch size, need to adjust if is possible a batch ends up with 1 as this breaks Batch Norm
# Early cutoff threshold and sliding window
# If no improvement more than early cutoff then terminate
early_cutoff = 0.005
hidden_size = 3000 # Slightly larger than others for divisibility.
out_dir = f"fedist_{hidden_size}_{dname}_res"
os.makedirs(f"out/{out_dir}", exist_ok=True)
class SlidingWindow:
def __init__(self):
self.wind_size = 50
self.count = 0
self.slide_wind = []
def is_full(self):
return self.count == self.wind_size
def update(self, val):
if self.count == 0 or len(self.slide_wind) == 0:
self.slide_wind.append(val)
self.count += 1
return
last = self.slide_wind[-1]
self.count += 1
if val > last:
self.slide_wind.append(val)
if self.count > self.wind_size:
self.slide_wind.pop(0)
self.count -= 1
def get_diff(self):
if len(self.slide_wind) == 0:
return 0
if len(self.slide_wind) == 1:
return self.slide_wind[-1]
return self.slide_wind[-1] - self.slide_wind[0]
class SlidingWindowAvg:
def __init__(self):
self.wind_size = 50
self.count = 0
self.prev = 0
self.slide_wind = []
# Use second difference to check oscillation
self.second_count = 0
self.prev_diff = 0
self.second_diff = []
def is_full(self):
return self.count == self.wind_size
def update(self, val):
diff = abs(val - self.prev)
self.slide_wind.append(diff)
self.prev = val
self.count += 1
if self.count > self.wind_size:
self.slide_wind.pop(0)
self.count -= 1
sec_diff = abs(diff - self.prev_diff)
self.second_diff.append(sec_diff)
self.prev_diff = diff
self.second_count += 1
if self.second_count > self.wind_size - 1:
# second window size should be one smaller
self.second_diff.pop(0)
self.second_count -= 1
def get_diff(self):
return sum(self.slide_wind)/self.count
def get_secdiff(self):
return sum(self.second_diff)/(self.second_count)
class DatasetSplit(Dataset):
# Uses a partitioning of dataset indices according to users
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return image, label
# Alternative, just run until a certain FLOP/Byte amount? First monitor a dryrun to see a good cutoff
device = torch.device('cuda:{}'.format(GPU) if torch.cuda.is_available() else 'cpu')
#DEVICE0 = torch.device('cuda:{}'.format(0) if torch.cuda.is_available() else 'cpu')
#feature_extractor = ResDenseConcat()
#feature_extractor.eval()
input_dim = (BS, 3072)
if dname == "cifar10":
dataset = CIFAR10Dataset('./out/data/cifar10')
dataset.load_features('./out/cifar10resdensefeatures.pkl')
OUTPUT_SIZE = 10
elif dname == "cubbirds":
dataset = CUBBirdsDataset("./data_parsing/CUB_200_2011/images_new")
dataset.load_features('./out/cubbirdsresdensefeatures.pkl')
OUTPUT_SIZE = 200
elif dname == "cifar100":
dataset = CIFAR100Dataset('./out/data/cifar100')
dataset.load_features('./out/cifar100resdensefeatures.pkl')
OUTPUT_SIZE = 100
elif dname == "vggflowers":
dataset = VGGFlowersDataset("./data_parsing/vggflowers/images_new")
dataset.load_features('./out/vggflowersresdensefeatures.pkl')
OUTPUT_SIZE = 102
elif dname == "aircraft":
dataset = AircraftDataset("./data_parsing/aircraft/fgvc-aircraft-2013b/data/images_new")
dataset.load_features('./out/aircraftresdensefeatures.pkl')
OUTPUT_SIZE = 100
elif dname == "dtextures":
dataset = TexturesDataset("./data_parsing/describe_textures/dtd//images_new")
dataset.load_features('./out/dtexturesresdensefeatures.pkl')
OUTPUT_SIZE = 47
elif dname == "stanfordcars":
dataset = StanfordCarsDataset("./data_parsing/out/stanfordcars")
dataset.load_features('./data_parsing/out/stanfordcarsresdensefeatures.pkl')
OUTPUT_SIZE = 196
classes = dataset.classes
dataset_sizes = dataset.dataset_sizes
#loaders['train'] = [DataLoader(DatasetSplit(dataset.dataset['train'], usersplit_train[user]), batch_size=BS, shuffle=True) for user in range(USERS)]
# Implements IST aggregation
# Modify this for different algorithms
def aggregate(w_glob, w, fc1_index):
new_server_glob = w_glob
layer_fc1_weight = []
layer_bn1_weight = []
layer_bn1_bias = []
layer_fc2_weight = []
for i in range(len(w)):
layer_fc1_weight.append(w[i]['fc1.weight'].cpu())
layer_bn1_weight.append(w[i]['bn1.weight'].cpu())
layer_bn1_bias.append(w[i]['bn1.bias'].cpu())
layer_fc2_weight.append(w[i]['fc2.weight'].cpu())
update_tensor_by_update_lists_dim_0(new_server_glob['fc1.weight'], layer_fc1_weight, fc1_index)
update_tensor_by_update_lists_dim_0(new_server_glob['bn1.weight'], layer_bn1_weight, fc1_index)
update_tensor_by_update_lists_dim_0(new_server_glob['bn1.bias'], layer_bn1_bias, fc1_index)
update_tensor_by_update_lists_dim_1(new_server_glob['fc2.weight'], layer_fc2_weight, fc1_index)
del w
return new_server_glob
def local_train():
# TODO Move some of the training stuff here to make it modular
return
def get_params(net):
param_group = [copy.deepcopy(t) for t in net.parameters()]
return param_group
def train_model_federated(num_users, part_ratio, device, model, local_model, feature_extractor, criterion, diric, learning_rate, num_epochs=25, local_epochs=1):
since = time.time()
tracker = MetricTracker(since)
sw = SlidingWindowAvg()
#model.to(device)
#local_model.to(device)
#feature_extractor.to(device)
#feature_extractor.eval()
#sum_model = copy.deepcopy(model)
sum_local_model = copy.deepcopy(local_model)
#glob_sum = summary(sum_model, input_dim, verbose=0)
local_sum = summary(sum_local_model, input_dim, verbose=0)
est_inputs = (torch.randn(input_dim),)
flops = FlopCountAnalysis(local_model, est_inputs)
flops_estimate = flops.total()
#print(flops_estimate)
best_model_wts = model.state_dict()
best_acc = 0.0
best_test_acc = 0.0
if USERS > 1:
usersplit_train = dirichlet_sampler_idsize(dataset.dataset['train'], USERS, diric)
else:
# If one user use whole dataset on one node
usersplit_train = {0: np.arange(len(dataset.dataset['train']))}
loaders = {'test': DataLoader(dataset.dataset['test'], batch_size=BS, shuffle=True)}
# For FedProx/FedAvg just use global model for model trained locally
local_model_copy = copy.deepcopy(local_model).to(device)
optimizers = [optim.SGD(local_model_copy.parameters(), lr=learning_rate, momentum=0.9) for user in range(num_users)]
schedulers = [lr_scheduler.StepLR(optimizers[user], step_size=num_epochs//4, gamma=0.1) for user in range(num_users)]
for epoch in range(num_epochs):
tot_flops = 0 # Use these for bytes metric cutoffs
tot_bytes = 0
model.train()
w_glob = model.state_dict()
w_local = local_model.state_dict()
print(f'Epoch {epoch}/{num_epochs -1}')
print('-' * 10)
local_weights = []
local_loss = []
phase = 'train' # For federated cases 'train' mode in user loop then 'test'
# Implement user participation
part_users= max(1, int(num_users * part_ratio)) # Minimum one user
idxs_users = np.random.choice(range(num_users), part_users, replace=False)
idxs_users = sorted(idxs_users) # Sort this so that printing makes sense
# Used in IST
index_hidden_layer = model.partition(part_users, local_model.get_hidden_dim())
fc1_weight_partition = partition_FC_layer_by_output_dim_0(w_glob['fc1.weight'], index_hidden_layer)
bn1_weight_partition, bn1_bias_partition = partition_BN_layer(w_glob['bn1.weight'], w_glob['bn1.bias'], index_hidden_layer)
fc2_weight_partition = partition_FC_layer_by_input_dim_1(w_glob['fc2.weight'], index_hidden_layer)
for u_id, user in enumerate(idxs_users):
torch.cuda.empty_cache()
#print(f'User {user}/{num_users - 1}')
# Used in IST
w_local['fc1.weight'] = fc1_weight_partition[u_id]
w_local['bn1.weight'] = bn1_weight_partition[u_id]
w_local['bn1.bias'] = bn1_bias_partition[u_id]
w_local['fc2.weight'] = fc2_weight_partition[u_id]
local_params = copy.deepcopy(w_local)
local_model_copy.load_state_dict(local_params)
local_model_copy.train()
running_loss = 0.0
running_corrects = 0
user_total_trials = 0
#local_model_copy = copy.deepcopy(local_model).to(device)
#old_params = get_params(local_model_copy)
batches = []
counter = 0
refresh = 0
while counter < local_epochs:
# Prepare batches
if refresh == 0:
loader = DataLoader(DatasetSplit(dataset.dataset['train'], usersplit_train[user]), batch_size=BS, shuffle=True)
it = iter(loader)
refresh = len(loader)
nxt_batch = next(it)
refresh -= 1
counter += 1
batches.append(nxt_batch)
#loader = DataLoader(DatasetSplit(dataset.dataset['train'], usersplit_train[user]), batch_size=BS, shuffle=True)
#torch.cuda.empty_cache() #Does this do anything??
for batch_idx, (inputs, labels) in enumerate(batches):
#print(f'Local round {batch_idx}/{local_epochs - 1}')
inputs = inputs.to(device)
labels = labels.to(device)
optimizer = optimizers[user]
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = local_model_copy(inputs)
_, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
#local_params = get_params(local_model_copy)
optimizer.step()
batch_loss = loss.item() * inputs.size(0)
batch_corrects = torch.sum(preds == labels.data)
#print(f'Batch {batch_idx}: {batch_loss}, {batch_corrects}') # Debug?
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
user_total_trials += len(inputs)
if epoch >= num_epochs//4:
schedulers[user].step() # Does it matter when scheduler is updated using local or global rounds?
local_weights.append(copy.deepcopy(local_model_copy.state_dict()))
del local_params
epoch_loss = running_loss / user_total_trials
epoch_acc = running_corrects.double() / user_total_trials
#print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
w_new = aggregate(w_glob, local_weights, index_hidden_layer)
model.load_state_dict(w_new)
if phase == 'train' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
eval_model = copy.deepcopy(model).to(device)
phase = 'test'
eval_model.eval()
running_loss = 0.0
running_corrects = 0
for batch_idx, (inputs, labels) in enumerate(loaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = eval_model(inputs)
_, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
loss = criterion(outputs, labels)
batch_loss = loss.item() * inputs.size(0)
batch_corrects = torch.sum(preds == labels.data)
#print(f'Batch {batch_idx}: {batch_loss}, {batch_corrects}')
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if best_test_acc < epoch_acc:
best_test_acc = epoch_acc
del eval_model
tracker.add_transfer(2 * part_users * local_sum.total_param_bytes) # Copy to and from
tracker.add_flop(part_users * local_epochs * flops_estimate)
tracker.add_accuracy(epoch_acc.item())
sw.update(epoch_acc)
#print(sw.get_diff())
#if sw.is_full() and sw.get_diff() < early_cutoff:
# break
if epoch % 100 == 0:
os.makedirs(f"out/temp", exist_ok=True)
tracker.write(f"temp/{dataset.dataset['train'].name}_fedist_dir{diric}_user{num_users}_lr{lr}_frac{part_ratio}_localit{local_epochs}")
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed//60:.0f}m {time_elapsed%60:.0f}s')
print(f'Best train Acc: {best_acc:4f}')
print(f'Best test Acc: {best_test_acc:4f}')
model.load_state_dict(best_model_wts)
tracker.write(f"{out_dir}/{dataset.dataset['train'].name}_fedist_dir{diric}_user{num_users}_lr{lr}_frac{part_ratio}_localit{local_epochs}")
return model, best_test_acc, tracker.flops[-1], tracker.transferred[-1]
# Main body
#participating_users= max(1, int(USERS * FRAC)) # Minimum one user
#hidden_size = 1020
#hidden_size = 6000
# For Fedavg local model and global model are same
criterion = nn.CrossEntropyLoss()
for diric in DIRIC:
for lr in LR:
for p in parameters:
frac = p['frac']
factor = 1
factor = 1
if frac == 0.3:
factor = 3
elif frac == 0.02:
factor = 2
elif frac == 0.06:
factor = 6
scaled_hidden_size = factor * hidden_size
local_epochs = p['loc']
participating_users= max(1, int(USERS * frac)) # Minimum one user
local_hidden_size = scaled_hidden_size//participating_users
model = ServerMLP(3072, scaled_hidden_size, OUTPUT_SIZE)
local_model = DeviceMLP(3072, local_hidden_size, OUTPUT_SIZE)
print(model)
print(local_model)
print(f"parameters:dir-{diric},lr-{lr},local-{local_epochs},frac-{frac}")
model, acc, flops, transferred = train_model_federated(USERS, frac, device, model, local_model, None, criterion, diric, lr, EPOCHS, local_epochs)
print(f"acc-{acc},flops-{flops},transferred-{transferred}")
#torch.save(model, "out/fedist_resdenseconcat_mlp_model.pt")