-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfedavg_endtoend_mlp_main.py
executable file
·370 lines (292 loc) · 13.3 KB
/
fedavg_endtoend_mlp_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader, Dataset
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from models.models import MLP, MLPTwoHidden
from data_parsing.cifar10_data import CIFAR10Dataset
from data_parsing.cifar100_data import CIFAR100Dataset
from data_parsing.cubbirds_data_version2 import CUBBirdsDataset
from data_parsing.dirichlet_sampler import *
from data_parsing.feature_extractors import *
from utils.plot import MetricTracker
from torchinfo import summary
from fvcore.nn import FlopCountAnalysis
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--gpu", type=int, required=True)
args = parser.parse_args()
GPU = args.gpu # Change depending on others' use of GPUS
dname=args.dataset
EPOCHS=1000 # If this isn't improving by 50 epochs I don't think it will ever converge
#LOCAL_EPOCHS = [1]
LOCAL_EPOCHS=[25]
#LR = [0.01]
LR=[0.01]
BS=32
USERS= 100 # Number of users
FRAC=[0.1,0.3] # Fraction of users to report
#DIRIC= 0.01 # Dirichlet parameter
DIRIC =[0.01]
# Early cutoff threshold and sliding window
# If no improvement more than early cutoff then terminate
early_cutoff = 0.005
#out_dir = "fedavg_full_model_acc"
out_dir = f"fedavg_fullmodel18_{dname}_res"
os.makedirs(f"out/{out_dir}", exist_ok=True)
feature_extractor = ResDenseConcat()
feature_extractor.eval()
modes = ['train', 'test']
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=(224,224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
if dname == "cifar100":
dataset = {x: datasets.CIFAR100("./out/data/cifar100", train=(x=='train'), download=True, transform=transforms[x]) for x in modes}
class_names = dataset['train'].classes
dataset_sizes = {x: len(dataset[x]) for x in modes}
elif dname == "aircraft":
data_dir = os.path.join("data_parsing", "aircraft", "fgvc-aircraft2013b", "data", "images_new")
dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in modes}
dataset_sizes = {x: len(dataset[x]) for x in modes}
class_names = dataset['train'].classes
elif dname == "dtextures":
data_dir = os.path.join("data_parsing", "describe_textures", "dtd", "images_new")
dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in modes}
dataset_sizes = {x: len(dataset[x]) for x in modes}
class_names = dataset['train'].classes
elif dname == "stanfordcars":
dataset = {x: datasets.StanfordCars("./out/data/stanfordcars", train=(x=='train'), download=True, transform=transforms[x]) for x in modes}
class_names = dataset['train'].classes
dataset_sizes = {x: len(dataset[x]) for x in modes}
elif dname == "vggflowers":
data_dir = os.path.join("data_parsing", "vggflowers", "images_new")
dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in modes}
dataset_sizes = {x: len(dataset[x]) for x in modes}
class_names = dataset['train'].classes
elif dname == "cubbirds":
data_dir = os.path.join("data_parsing", "CUB_200_2011", "images_new")
dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in modes}
dataset_sizes = {x: len(dataset[x]) for x in modes}
class_names = dataset['train'].classes
input_dim = (BS, 3, 224, 224)
#classes = dataset.classes
#dataset_sizes = dataset.dataset_sizes
dataset['train'].name = dname
class DatasetSplit(Dataset):
# Uses a partitioning of dataset indices according to users
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return image, label
loaders = {'test': DataLoader(dataset['test'], batch_size=BS, shuffle=True)}
#loaders['train'] = [DataLoader(DatasetSplit(dataset.dataset['train'], usersplit_train[user]), batch_size=BS, shuffle=True) for user in range(USERS)]
device = torch.device('cuda:{}'.format(GPU) if torch.cuda.is_available() else 'cpu')
# Implements Fed average aggregation
# Modify this for different algorithms
def aggregate(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
if "conv" in k or "fc" in k:
for i in range(1, len(w)):
w_avg[k] += w[i][k]
w_avg[k] = torch.div(w_avg[k], len(w))
del w
return w_avg
def local_train():
# TODO Move some of the training stuff here to make it modular
return
# Add scheduler?
def train_model_federated(num_users, part_ratio, device, model, local_model, feature_extractor, criterion, diric, learning_rate, num_epochs=25, local_epochs=1):
since = time.time()
tracker = MetricTracker(since)
#model.to(device)
#local_model.to(device)
#feature_extractor.to(device)
#feature_extractor.eval()
sum_model = copy.deepcopy(model)
#glob_sum = summary(sum_model, input_dim, verbose=0)
local_sum = summary(sum_model, input_dim, verbose=0)
local_model_size = local_sum.total_param_bytes
est_inputs = (torch.randn(input_dim),)
flops = FlopCountAnalysis(model, est_inputs)
flops_estimate = flops.total()
del local_sum
del sum_model
del flops
#best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_test_acc = 0.0
if USERS > 1:
usersplit_train = dirichlet_sampler_idsize(dataset['train'], USERS, diric)
else:
# If one user use whole dataset on one node
usersplit_train = {0: np.arange(len(dataset['train']))}
# For FedProx/FedAvg just use global model for model trained locally
local_model_copy = copy.deepcopy(model).to(device)
optimizers = [optim.SGD(local_model_copy.parameters(), lr=learning_rate, momentum=0.0) for user in range(num_users)]
schedulers = [lr_scheduler.StepLR(optimizers[user], step_size=num_epochs//4, gamma=0.1) for user in range(num_users)]
for epoch in range(num_epochs):
model.train()
w_glob = model.state_dict()
print(f'Epoch {epoch}/{num_epochs -1}')
print('-' * 10)
local_weights = []
local_loss = []
phase = 'train' # For federated cases 'train' mode in user loop then 'test'
# Implement user participation
part_users= max(1, int(num_users * part_ratio)) # Minimum one user
idxs_users = np.random.choice(range(num_users), part_users, replace=False)
idxs_users = sorted(idxs_users) # Sort this so that printing makes sense
for user in idxs_users:
#torch.cuda.empty_cache()
#print(f'User {user}/{num_users - 1}')
local_params = copy.deepcopy(w_glob)
local_model_copy.load_state_dict(local_params)
local_model_copy.train()
running_loss = 0.0
running_corrects = 0
user_total_trials = 0
batches = []
counter = 0
refresh = 0
while counter < local_epochs:
# Prepare batches
if refresh == 0:
loader = DataLoader(DatasetSplit(dataset['train'], usersplit_train[user]), batch_size=BS, shuffle=True)
it = iter(loader)
refresh = len(loader)
nxt_batch = next(it)
refresh -= 1
counter += 1
batches.append(nxt_batch)
#loader = DataLoader(DatasetSplit(dataset['train'], usersplit_train[user]), batch_size=BS, shuffle=True)
for batch_idx, (inputs, labels) in enumerate(batches):
torch.cuda.empty_cache()
#print(f'Local round {batch_idx}/{local_epochs - 1}')
inputs = inputs.to(device)
labels = labels.to(device)
optimizer = optimizers[user]
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = local_model_copy(inputs)
_, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
loss = criterion(outputs, labels)
del outputs
if phase == 'train':
loss.backward()
optimizer.step()
batch_loss = loss.item() * inputs.size(0)
batch_corrects = torch.sum(preds == labels.data)
#print(f'Batch {batch_idx}: {batch_loss}, {batch_corrects}')
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
user_total_trials += len(inputs)
del loss
if epoch >= num_epochs//4:
schedulers[user].step() # Does it matter when scheduler is updated using local or global rounds?
local_weights.append(local_model_copy.state_dict())
epoch_loss = running_loss / user_total_trials
epoch_acc = running_corrects.double() / user_total_trials
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
del local_params
w_new = aggregate(local_weights)
model.load_state_dict(w_new)
del local_weights
del w_new
if phase == 'train' and epoch_acc > best_acc:
best_acc = epoch_acc
#best_model_wts = copy.deepcopy(model.state_dict())
phase = 'test'
eval_model = copy.deepcopy(model).to(device)
eval_model.eval()
running_loss = 0.0
running_corrects = 0
for batch_idx, (inputs, labels) in enumerate(loaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = eval_model(inputs)
_, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
batch_loss = loss.item() * inputs.size(0)
batch_corrects = torch.sum(preds == labels.data)
#print(f'Batch {batch_idx}: {batch_loss}, {batch_corrects}')
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if best_test_acc < epoch_acc:
best_test_acc = epoch_acc
del eval_model
tracker.add_transfer(2 * part_users * local_model_size) # Copy to and from
tracker.add_flop(part_users * local_epochs * flops_estimate)
tracker.add_accuracy(epoch_acc.item())
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed//60:.0f}m {time_elapsed%60:.0f}s')
print(f'Best train Acc: {best_acc:4f}')
print(f'Best test Acc: {best_test_acc:4f}')
#model.load_state_dict(best_model_wts)
#del best_model_wts
tracker.write(f"{out_dir}/{dataset['train'].name}_fullfedavg_dir{diric}_user{USERS}_lr{learning_rate}_frac{part_ratio}_localit{local_epochs}")
return model, best_test_acc, tracker.flops[-1], tracker.transferred[-1]
# Main body
# Add scheduler?
# For Fedavg local model and global model are same
#model = MLP(INPUT_SIZE, 5000, OUTPUT_SIZE)
#model = torchvision.models.resnet18(pretrained=True)
#num_ftrs = model.fc.in_features
#model.fc = nn.Linear(num_ftrs, 200)
#model = MLPTwoHidden(1000, 10000, 10000, OUTPUT_SIZE)
#local_model = copy.deepcopy(model)
criterion = nn.CrossEntropyLoss()
#print(model)
# Refactor code from online so that train_model runs only one training round rather than all
for diric in DIRIC:
for frac in FRAC:
for lr in LR:
for local_epochs in LOCAL_EPOCHS:
model = torchvision.models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 200)
#model = MLPTwoHidden(1000, 10000, 10000, OUTPUT_SIZE)
local_model = copy.deepcopy(model)
criterion = nn.CrossEntropyLoss()
print(model)
print(f"parameters:dir-{diric},lr-{lr},local-{local_epochs},frac-{frac}")
model, acc, flops, transferred = train_model_federated(USERS, frac, device, model, local_model, None, criterion, diric, lr, EPOCHS, local_epochs)
print(f"acc-{acc},flops-{flops},transferred-{transferred}")
#torch.save(model, "out/fedavg_resdenseconcat_mlp_model.pt")