-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdivergence_experiment.py
465 lines (380 loc) · 16.7 KB
/
divergence_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader, Dataset
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from feature_extractors.feature_extractors import ResDenseConcat
from models.models import MLP, ServerMLP, DeviceMLP
from data_parsing.cifar10_data import CIFAR10Dataset
from data_parsing.cifar100_data import CIFAR100Dataset
from data_parsing.cubbirds_data_version2 import CUBBirdsDataset
from data_parsing.vggflowers_data import VGGFlowersDataset
from data_parsing.aircraft_data import AircraftDataset
from data_parsing.textures_data import TexturesDataset
from data_parsing.stanford_cars_data import StanfordCarsDataset
from data_parsing.dirichlet_sampler import *
from ist.partition import *
from models.proximal_sgd import ProximalOptimizer
from utils.plot import MetricTracker
from torchinfo import summary
from fvcore.nn import FlopCountAnalysis
import statistics
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True)
args = parser.parse_args()
GPU1 = 2 # Change depending on others' use of GPUS
GPU2 = 3
dname = args.dataset
out_dir = f"out/divergence_{dname}_v1_iid"
os.makedirs(out_dir, exist_ok=True)
# These aren't in ranges because we are certain we use these
USERS=100 # Number of users
FRAC={
100: 0.1
}
FRAC = FRAC[USERS]
#DIRIC=[100]
DIRIC=50 # Dirichlet parameter
LR=0.01
#LR=[0.1, 0.01, 0.001]
#LOCAL_EPOCHS=[1]
algs = ["fedavg", "fedprox", "ist", "istprox"]
#algs = ["ist", "istprox"]
alg_local_ep = {"fedavg": 25, "fedprox": 25, "ist": 25, "istprox": 25}
divergence_rounds = 1
mu = 0.2
BS=32 # Initial batch size, need to adjust if is possible a batch ends up with 1 as this breaks Batch Norm
EPOCHS=100
class DatasetSplit(Dataset):
# Uses a partitioning of dataset indices according to users
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return image, label
device_avg = torch.device('cuda:{}'.format(GPU1) if torch.cuda.is_available() else 'cpu')
device_ist = torch.device('cuda:{}'.format(GPU2) if torch.cuda.is_available() else 'cpu')
if dname == "cifar10":
dataset = CIFAR10Dataset('./out/data/cifar10')
dataset.load_features('./out/cifar10resdensefeatures.pkl')
OUTPUT_SIZE = 10
elif dname == "cubbirds":
dataset = CUBBirdsDataset("./data_parsing/CUB_200_2011/images_new")
dataset.load_features('./out/cubbirdsresdensefeatures.pkl')
OUTPUT_SIZE = 200
elif dname == "cifar100":
dataset = CIFAR100Dataset('./out/data/cifar100')
dataset.load_features('./out/cifar100resdensefeatures.pkl')
OUTPUT_SIZE = 100
elif dname == "vggflowers":
dataset = VGGFlowersDataset("./data_parsing/vggflowers/images_new")
dataset.load_features('./out/vggflowersresdensefeatures.pkl')
OUTPUT_SIZE = 102
elif dname == "aircraft":
dataset = AircraftDataset("./data_parsing/aircraft/fgvc-aircraft-2013b/data/images_new")
dataset.load_features('./out/aircraftresdensefeatures.pkl')
OUTPUT_SIZE = 100
elif dname == "dtextures":
dataset = TexturesDataset("./data_parsing/describe_textures/dtd//images_new")
dataset.load_features('./out/dtexturesresdensefeatures.pkl')
OUTPUT_SIZE = 47
elif dname == "stanfordcars":
dataset = StanfordCarsDataset("./data_parsing/out/stanfordcars")
dataset.load_features('./data_parsing/out/stanfordcarsresdensefeatures.pkl')
OUTPUT_SIZE = 196
classes = dataset.classes
dataset_sizes = dataset.dataset_sizes
def w_delta(w1, w2):
aggregate = None
for k in w1.keys(): # Assume keys are same
if aggregate is None:
aggregate = torch.linalg.norm(torch.sub(w1[k], w2[k])).square()
else:
aggregate += torch.linalg.norm(torch.sub(w1[k], w2[k])).square()
aggregate = aggregate.sqrt()
return aggregate.item()
def w_dir(w1, w2):
norm = w_delta(w1, w2)
aggregate = {}
for k in w1.keys():
if norm < 1e-5:
aggregate[k] = torch.as_tensor(0.0)
else:
aggregate[k] = torch.sub(w1[k], w2[k]).div(norm)
return aggregate
def w_norm(w):
aggregate = None
for k in w.keys(): # Assume keys are same
if aggregate is None:
aggregate = torch.linalg.norm(w[k]).square()
else:
aggregate += torch.linalg.norm(w[k]).square()
aggregate = aggregate.sqrt()
return aggregate.item()
def cosine_sim(w1, w2):
dot_prod = None
for k in w1.keys():
if dot_prod is None:
dot_prod = torch.sum(torch.mul(w1[k], w2[k]))
else:
dot_prod += torch.sum(torch.mul(w1[k], w2[k]))
sim = dot_prod.div(w_norm(w1)).div(w_norm(w2))
return sim.item()
def avg_pairwise_cosine_sim(w_loc, central):
n = len(w_loc)
cosines = []
for i in range(n):
for j in range(i):
a = w_dir(w_loc[i], central)
b = w_dir(w_loc[j], central)
cosines.append(cosine_sim(a, b))
mu = statistics.mean(cosines)
sigma = statistics.pstdev(cosines)
return mu, sigma
def aggregate_avg(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k]
w_avg[k] = torch.div(w_avg[k], len(w))
return w_avg
def aggregate_ist(w_glob, w, fc1_index):
new_server_glob = copy.deepcopy(w_glob)
layer_fc1_weight = []
layer_bn1_weight = []
layer_bn1_bias = []
layer_fc2_weight = []
for i in range(len(w)):
layer_fc1_weight.append(w[i]['fc1.weight'].cpu())
layer_bn1_weight.append(w[i]['bn1.weight'].cpu())
layer_bn1_bias.append(w[i]['bn1.bias'].cpu())
layer_fc2_weight.append(w[i]['fc2.weight'].cpu())
update_tensor_by_update_lists_dim_0(new_server_glob['fc1.weight'], layer_fc1_weight, fc1_index)
update_tensor_by_update_lists_dim_0(new_server_glob['bn1.weight'], layer_bn1_weight, fc1_index)
update_tensor_by_update_lists_dim_0(new_server_glob['bn1.bias'], layer_bn1_bias, fc1_index)
update_tensor_by_update_lists_dim_1(new_server_glob['fc2.weight'], layer_fc2_weight, fc1_index)
return new_server_glob
def get_params(net):
param_group = [copy.deepcopy(t) for t in net.parameters()]
return param_group
def central_train(device, model, data, optimizer):
model.to(device)
model.train()
loader = DataLoader(DatasetSplit(dataset.dataset['train'], data), batch_size=BS, shuffle=True)
#loader = torch.utils.data.DataLoader(data, batch_size=BS,
# shuffle=True, num_workers=2)
# Run for an entire epoch
for (inputs, labels) in loader:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
with torch.set_grad_enabled(True):
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
def local_train(device, model, alg, rounds, dataset, loc_data):
model.to(device)
model.train()
if alg in ["fedprox", "istprox"]:
optimizer = ProximalOptimizer(model.parameters(), lr=LR, momentum=0.9)
else:
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9)
batches = []
counter = 0
refresh = 0
while counter < rounds:
# Prepare batches
if refresh == 0:
loader = DataLoader(DatasetSplit(dataset.dataset['train'], loc_data), batch_size=BS, shuffle=True)
it = iter(loader)
refresh = len(loader)
nxt_batch = next(it)
refresh -= 1
counter += 1
batches.append(nxt_batch)
phase = 'train'
old_params = get_params(model)
for (inputs, labels) in batches:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
if alg in ["fedprox", "istprox"]:
local_params = get_params(model)
optimizer.step(old_params, local_params, mu)
else:
optimizer.step()
return copy.deepcopy(model.state_dict())
def eval(model, dataset, device):
eval_model = copy.deepcopy(model).to(device)
eval_model.eval()
loader = DataLoader(dataset, batch_size=BS, shuffle=True)
running_loss = 0
running_corrects = 0
for batch_idx, (inputs, labels) in enumerate(loader):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = eval_model(inputs)
_, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes['test']
epoch_acc = running_corrects.double() / dataset_sizes['test']
print(f'Test Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
return epoch_acc
criterion = nn.CrossEntropyLoss()
avg_hidden_size = 1000
ist_hidden_size = 3000
ist_loc_size = 300
avg_model = MLP(3072, avg_hidden_size, OUTPUT_SIZE).to(device_avg)
ist_model = ServerMLP(3072, ist_hidden_size, OUTPUT_SIZE) #.to(device_ist)
local_model = DeviceMLP(3072, ist_loc_size, OUTPUT_SIZE).to(device_ist)
central_model_avg = copy.deepcopy(avg_model).to(device_avg)
central_model_ist = copy.deepcopy(ist_model).to(device_ist)
central_optimizer_avg = optim.SGD(central_model_avg.parameters(), lr=LR, momentum=0.9)
central_optimizer_ist = optim.SGD(central_model_ist.parameters(), lr=LR, momentum=0.9)
models = {
"fedavg": copy.deepcopy(avg_model).to(device_avg),
"fedprox": copy.deepcopy(avg_model).to(device_avg),
"ist": copy.deepcopy(ist_model), #.to(device_ist),
"istprox": copy.deepcopy(ist_model) #.to(device_ist)
}
delta_results = {v: [] for v in algs}
cosine_results = {"fedavg": [], "fedprox": []}
def write_results(data, alg, type, out=out_dir):
fname = f"{out}/{alg}_{type}.csv"
with open(fname, "w") as ofile:
for idx, v in enumerate(data):
ofile.write(f"{idx},{v}\n")
central_avg_acc = []
central_ist_acc = []
for e in range(EPOCHS):
print(f"Epoch {e}:")
usersplit_train = dirichlet_sampler_idsize(dataset.dataset['train'], USERS, DIRIC)
#data_central = dataset.dataset['train']
part_users= max(1, int(USERS * FRAC)) # Minimum one user
idxs_users = np.random.choice(range(USERS), part_users, replace=False)
idxs_users = sorted(idxs_users) # Sort this so that printing makes sense
data_central = [v for u in idxs_users for v in usersplit_train[u]]
central_train(device_avg, central_model_avg, data_central, central_optimizer_avg)
central_train(device_ist, central_model_ist, data_central, central_optimizer_ist)
print("Central for average algs")
avg_acc = eval(central_model_avg, dataset.dataset['test'], device_avg)
print("Central for ist algs")
ist_acc = eval(central_model_ist, dataset.dataset['test'], device_ist)
central_avg_acc.append(avg_acc)
central_ist_acc.append(ist_acc)
write_results(central_avg_acc, "central_avg", "acc")
write_results(central_ist_acc, "central_ist", "acc")
w_central_avg_init = copy.deepcopy(central_model_avg.state_dict())
w_central_ist_init = copy.deepcopy(central_model_ist.state_dict())
# Initialize all algorithms to be same as central models to get comparison of deviations
for alg in algs:
if "ist" in alg:
models[alg].load_state_dict(w_central_ist_init)
#pass
else:
models[alg].load_state_dict(w_central_avg_init)
central_avg_copy = copy.deepcopy(central_model_avg).to(device_avg)
central_ist_copy = copy.deepcopy(central_model_ist).to(device_ist)
central_opt_avg_copy = optim.SGD(central_avg_copy.parameters(), lr=LR, momentum=0.9)
central_opt_avg_copy.load_state_dict(central_optimizer_avg.state_dict())
central_opt_ist_copy = optim.SGD(central_ist_copy.parameters(), lr=LR, momentum=0.9)
central_opt_ist_copy.load_state_dict(central_optimizer_ist.state_dict())
for i in range(divergence_rounds):
central_train(device_avg, central_avg_copy, data_central, central_opt_avg_copy)
central_train(device_ist, central_ist_copy, data_central, central_opt_ist_copy)
w_central_avg = central_avg_copy.state_dict()
w_central_ist = central_ist_copy.state_dict()
w_central_avg_dir = w_dir(w_central_avg_init, w_central_avg)
w_central_ist_dir = w_dir(w_central_ist_init, w_central_ist)
for alg in algs:
print(f"Algorithm {alg}")
print("------------------------")
model = models[alg]
w_glob = copy.deepcopy(model.state_dict())
if "ist" in alg:
# Used in IST
index_hidden_layer = model.partition(part_users, local_model.get_hidden_dim())
fc1_weight_partition = partition_FC_layer_by_output_dim_0(w_glob['fc1.weight'], index_hidden_layer)
bn1_weight_partition, bn1_bias_partition = partition_BN_layer(w_glob['bn1.weight'], w_glob['bn1.bias'], index_hidden_layer)
fc2_weight_partition = partition_FC_layer_by_input_dim_1(w_glob['fc2.weight'], index_hidden_layer)
local_weights = []
for u_id, user in enumerate(idxs_users):
loc_data = usersplit_train[u_id]
if "ist" in alg:
local_model_copy = copy.deepcopy(local_model).to(device_ist)
w_local = copy.deepcopy(local_model.state_dict())
w_local['fc1.weight'] = fc1_weight_partition[u_id]
w_local['bn1.weight'] = bn1_weight_partition[u_id]
w_local['bn1.bias'] = bn1_bias_partition[u_id]
w_local['fc2.weight'] = fc2_weight_partition[u_id]
local_model_copy.load_state_dict(w_local)
for i in range(divergence_rounds):
weights = local_train(device_ist, local_model_copy, alg, alg_local_ep[alg], dataset, loc_data)
else:
local_model_copy = copy.deepcopy(model).to(device_avg)
for i in range(divergence_rounds):
weights = local_train(device_avg, local_model_copy, alg, alg_local_ep[alg], dataset, loc_data)
local_weights.append(weights)
if "ist" in alg:
w_central_dir = w_central_ist_dir
w_agg = aggregate_ist(w_glob, local_weights, index_hidden_layer)
else:
w_central_dir = w_central_avg_dir
w_agg = aggregate_avg(local_weights)
cos = avg_pairwise_cosine_sim(local_weights, w_central_dir)
cosine_results[alg].append(cos)
#print(f"Avg Pairwise Cosine Sim: {cos}")
write_results(cosine_results[alg], alg, "pair_cosine")
agg_dir = w_dir(w_agg, w_glob)
if "ist" in alg:
for k in agg_dir.keys():
agg_dir[k] = agg_dir[k].to(device_ist)
delta = cosine_sim(agg_dir, w_central_dir)
delta_results[alg].append(delta)
print(f"Normalized directional deviation: {delta}")
write_results(delta_results[alg], alg, "dir_cosine")
#models[alg].load_state_dict(w_agg)
# loaders = {'test': DataLoader(dataset.dataset['test'], batch_size=BS, shuffle=True)}
# eval_model = copy.deepcopy(model).to(device_ist)
# phase = 'test'
# eval_model.eval()
# running_loss = 0.0
# running_corrects = 0
# for batch_idx, (inputs, labels) in enumerate(loaders[phase]):
# inputs = inputs.to(device_ist)
# labels = labels.to(device_ist)
#
# with torch.set_grad_enabled(phase == 'train'):
# outputs = eval_model(inputs)
# _, preds = torch.max(outputs, 1) # TODO Does this need keepsize=True?
# loss = criterion(outputs, labels)
# batch_loss = loss.item() * inputs.size(0)
# batch_corrects = torch.sum(preds == labels.data)
# running_loss += loss.item() * inputs.size(0)
# running_corrects += torch.sum(preds == labels.data)
# epoch_loss = running_loss / dataset_sizes[phase]
# epoch_acc = running_corrects.double() / dataset_sizes[phase]
# print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')