-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_plot.py
40 lines (35 loc) · 1.43 KB
/
weight_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import numpy as np
import os
import pickle
import matplotlib.pyplot as plt
model_name = 'LTBoost'
for root, dirs, files in os.walk("checkpoints"):
for name in files:
model_path = os.path.join(root, name)
if model_name not in model_path:
continue
if model_name == 'LTBoost':
weights = pickle.load(open(model_path, 'rb')).state_dict()
else:
weights = torch.load(model_path,map_location=torch.device('cpu'))
weights_list = {}
if model_name in ['Linear', 'NLinear', 'LTBoost']:
weights_list['Full'] = weights['Linear.weight'].cpu().numpy()
else:
weights_list['seasonal'] = weights['Linear_Seasonal.weight'].numpy()
weights_list['trend'] = weights['Linear_Trend.weight'].numpy()
save_root = 'weights_plot/%s'%root.split('\\')[1]
#save_root = 'weights_plot/%s'%root.split('/')[1]
if not os.path.exists('weights_plot'):
os.mkdir('weights_plot')
if not os.path.exists(save_root):
os.mkdir(save_root)
for w_name,weight in weights_list.items():
fig,ax=plt.subplots()
ax.set_ylabel('Forecastingstep')
ax.set_xlabel('Lookbackstep')
im=ax.imshow(weight,cmap='plasma_r')
fig.colorbar(im,pad=0.03)
plt.savefig(os.path.join(save_root,w_name + '.pdf'),dpi=500)
plt.close()