forked from apache/doris
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffered_reader.cpp
975 lines (904 loc) · 40 KB
/
buffered_reader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "io/fs/buffered_reader.h"
#include <bvar/reducer.h>
#include <bvar/window.h>
#include <string.h>
#include <algorithm>
#include <chrono>
#include <memory>
#include "common/compiler_util.h" // IWYU pragma: keep
#include "common/config.h"
#include "common/status.h"
#include "runtime/exec_env.h"
#include "runtime/thread_context.h"
#include "runtime/workload_management/io_throttle.h"
#include "util/runtime_profile.h"
#include "util/slice.h"
#include "util/threadpool.h"
namespace doris {
namespace io {
struct IOContext;
// add bvar to capture the download bytes per second by buffered reader
bvar::Adder<uint64_t> g_bytes_downloaded("buffered_reader", "bytes_downloaded");
bvar::PerSecond<bvar::Adder<uint64_t>> g_bytes_downloaded_per_second("buffered_reader",
"bytes_downloaded_per_second",
&g_bytes_downloaded, 60);
Status MergeRangeFileReader::read_at_impl(size_t offset, Slice result, size_t* bytes_read,
const IOContext* io_ctx) {
_statistics.request_io++;
*bytes_read = 0;
if (result.size == 0) {
return Status::OK();
}
const int range_index = _search_read_range(offset, offset + result.size);
if (range_index < 0) {
SCOPED_RAW_TIMER(&_statistics.read_time);
Status st = _reader->read_at(offset, result, bytes_read, io_ctx);
_statistics.merged_io++;
_statistics.request_bytes += *bytes_read;
_statistics.merged_bytes += *bytes_read;
return st;
}
if (offset + result.size > _random_access_ranges[range_index].end_offset) {
// return _reader->read_at(offset, result, bytes_read, io_ctx);
return Status::IOError("Range in RandomAccessReader should be read sequentially");
}
size_t has_read = 0;
RangeCachedData& cached_data = _range_cached_data[range_index];
cached_data.has_read = true;
if (cached_data.contains(offset)) {
// has cached data in box
_read_in_box(cached_data, offset, result, &has_read);
_statistics.request_bytes += has_read;
if (has_read == result.size) {
// all data is read in cache
*bytes_read = has_read;
return Status::OK();
}
} else if (!cached_data.empty()) {
// the data in range may be skipped or ignored
for (int16 box_index : cached_data.ref_box) {
_dec_box_ref(box_index);
}
cached_data.reset();
}
size_t to_read = result.size - has_read;
if (to_read >= SMALL_IO || to_read >= _remaining) {
SCOPED_RAW_TIMER(&_statistics.read_time);
size_t read_size = 0;
RETURN_IF_ERROR(_reader->read_at(offset + has_read, Slice(result.data + has_read, to_read),
&read_size, io_ctx));
*bytes_read = has_read + read_size;
_statistics.merged_io++;
_statistics.request_bytes += read_size;
_statistics.merged_bytes += read_size;
return Status::OK();
}
// merge small IO
size_t merge_start = offset + has_read;
const size_t merge_end = merge_start + READ_SLICE_SIZE;
// <slice_size, is_content>
std::vector<std::pair<size_t, bool>> merged_slice;
size_t content_size = 0;
size_t hollow_size = 0;
if (merge_start > _random_access_ranges[range_index].end_offset) {
return Status::IOError("Fail to merge small IO");
}
int merge_index = range_index;
while (merge_start < merge_end && merge_index < _random_access_ranges.size()) {
size_t content_max = _remaining - content_size;
if (content_max == 0) {
break;
}
if (merge_index != range_index && _range_cached_data[merge_index].has_read) {
// don't read or merge twice
break;
}
if (_random_access_ranges[merge_index].end_offset > merge_end) {
size_t add_content = std::min(merge_end - merge_start, content_max);
content_size += add_content;
merge_start += add_content;
merged_slice.emplace_back(add_content, true);
break;
}
size_t add_content =
std::min(_random_access_ranges[merge_index].end_offset - merge_start, content_max);
content_size += add_content;
merge_start += add_content;
merged_slice.emplace_back(add_content, true);
if (merge_start != _random_access_ranges[merge_index].end_offset) {
break;
}
if (merge_index < _random_access_ranges.size() - 1 && merge_start < merge_end) {
size_t gap = _random_access_ranges[merge_index + 1].start_offset -
_random_access_ranges[merge_index].end_offset;
if ((content_size + hollow_size) > SMALL_IO && gap >= SMALL_IO) {
// too large gap
break;
}
if (gap < merge_end - merge_start && content_size < _remaining &&
!_range_cached_data[merge_index + 1].has_read) {
hollow_size += gap;
merge_start = _random_access_ranges[merge_index + 1].start_offset;
merged_slice.emplace_back(gap, false);
} else {
// there's no enough memory to read hollow data
break;
}
}
merge_index++;
}
content_size = 0;
hollow_size = 0;
std::vector<std::pair<double, size_t>> ratio_and_size;
// Calculate the read amplified ratio for each merge operation and the size of the merged data.
// Find the largest size of the merged data whose amplified ratio is less than config::max_amplified_read_ratio
for (const std::pair<size_t, bool>& slice : merged_slice) {
if (slice.second) {
content_size += slice.first;
if (slice.first > 0) {
ratio_and_size.emplace_back((double)hollow_size / content_size,
content_size + hollow_size);
}
} else {
hollow_size += slice.first;
}
}
size_t best_merged_size = 0;
for (int i = 0; i < ratio_and_size.size(); ++i) {
const std::pair<double, size_t>& rs = ratio_and_size[i];
size_t equivalent_size = rs.second / (i + 1);
if (rs.second > best_merged_size) {
if (rs.first <= _max_amplified_ratio ||
(_max_amplified_ratio < 1 && equivalent_size <= _equivalent_io_size)) {
best_merged_size = rs.second;
}
}
}
if (best_merged_size == to_read) {
// read directly to avoid copy operation
SCOPED_RAW_TIMER(&_statistics.read_time);
size_t read_size = 0;
RETURN_IF_ERROR(_reader->read_at(offset + has_read, Slice(result.data + has_read, to_read),
&read_size, io_ctx));
*bytes_read = has_read + read_size;
_statistics.merged_io++;
_statistics.request_bytes += read_size;
_statistics.merged_bytes += read_size;
return Status::OK();
}
merge_start = offset + has_read;
size_t merge_read_size = 0;
RETURN_IF_ERROR(
_fill_box(range_index, merge_start, best_merged_size, &merge_read_size, io_ctx));
if (cached_data.start_offset != merge_start) {
return Status::IOError("Wrong start offset in merged IO");
}
// read from cached data
size_t box_read_size = 0;
_read_in_box(cached_data, merge_start, Slice(result.data + has_read, to_read), &box_read_size);
*bytes_read = has_read + box_read_size;
_statistics.request_bytes += box_read_size;
if (*bytes_read < result.size && box_read_size < merge_read_size) {
return Status::IOError("Can't read enough bytes in merged IO");
}
return Status::OK();
}
int MergeRangeFileReader::_search_read_range(size_t start_offset, size_t end_offset) {
if (_random_access_ranges.empty()) {
return -1;
}
int left = 0, right = _random_access_ranges.size() - 1;
do {
int mid = left + (right - left) / 2;
const PrefetchRange& range = _random_access_ranges[mid];
if (range.start_offset <= start_offset && start_offset < range.end_offset) {
if (range.start_offset <= end_offset && end_offset <= range.end_offset) {
return mid;
} else {
return -1;
}
} else if (range.start_offset > start_offset) {
right = mid - 1;
} else {
left = mid + 1;
}
} while (left <= right);
return -1;
}
void MergeRangeFileReader::_clean_cached_data(RangeCachedData& cached_data) {
if (!cached_data.empty()) {
for (int i = 0; i < cached_data.ref_box.size(); ++i) {
DCHECK_GT(cached_data.box_end_offset[i], cached_data.box_start_offset[i]);
int16 box_index = cached_data.ref_box[i];
DCHECK_GT(_box_ref[box_index], 0);
_box_ref[box_index]--;
}
}
cached_data.reset();
}
void MergeRangeFileReader::_dec_box_ref(int16 box_index) {
if (--_box_ref[box_index] == 0) {
_remaining += BOX_SIZE;
}
if (box_index == _last_box_ref) {
_last_box_ref = -1;
_last_box_usage = 0;
}
}
void MergeRangeFileReader::_read_in_box(RangeCachedData& cached_data, size_t offset, Slice result,
size_t* bytes_read) {
SCOPED_RAW_TIMER(&_statistics.copy_time);
auto handle_in_box = [&](size_t remaining, char* copy_out) {
size_t to_handle = remaining;
int cleaned_box = 0;
for (int i = 0; i < cached_data.ref_box.size() && remaining > 0; ++i) {
int16 box_index = cached_data.ref_box[i];
size_t box_to_handle = std::min(remaining, (size_t)(cached_data.box_end_offset[i] -
cached_data.box_start_offset[i]));
if (copy_out != nullptr) {
}
if (copy_out != nullptr) {
memcpy(copy_out + to_handle - remaining,
_boxes[box_index].data() + cached_data.box_start_offset[i], box_to_handle);
}
remaining -= box_to_handle;
cached_data.box_start_offset[i] += box_to_handle;
if (cached_data.box_start_offset[i] == cached_data.box_end_offset[i]) {
cleaned_box++;
_dec_box_ref(box_index);
}
}
DCHECK_EQ(remaining, 0);
if (cleaned_box > 0) {
cached_data.ref_box.erase(cached_data.ref_box.begin(),
cached_data.ref_box.begin() + cleaned_box);
cached_data.box_start_offset.erase(cached_data.box_start_offset.begin(),
cached_data.box_start_offset.begin() + cleaned_box);
cached_data.box_end_offset.erase(cached_data.box_end_offset.begin(),
cached_data.box_end_offset.begin() + cleaned_box);
}
cached_data.start_offset += to_handle;
if (cached_data.start_offset == cached_data.end_offset) {
_clean_cached_data(cached_data);
}
};
if (offset > cached_data.start_offset) {
// the data in range may be skipped
size_t to_skip = offset - cached_data.start_offset;
handle_in_box(to_skip, nullptr);
}
size_t to_read = std::min(cached_data.end_offset - cached_data.start_offset, result.size);
handle_in_box(to_read, result.data);
*bytes_read = to_read;
}
Status MergeRangeFileReader::_fill_box(int range_index, size_t start_offset, size_t to_read,
size_t* bytes_read, const IOContext* io_ctx) {
if (!_read_slice) {
_read_slice = std::make_unique<OwnedSlice>(READ_SLICE_SIZE);
}
*bytes_read = 0;
{
SCOPED_RAW_TIMER(&_statistics.read_time);
RETURN_IF_ERROR(_reader->read_at(start_offset, Slice(_read_slice->data(), to_read),
bytes_read, io_ctx));
_statistics.merged_io++;
_statistics.merged_bytes += *bytes_read;
}
SCOPED_RAW_TIMER(&_statistics.copy_time);
size_t copy_start = start_offset;
const size_t copy_end = start_offset + *bytes_read;
// copy data into small boxes
// tuple(box_index, box_start_offset, file_start_offset, file_end_offset)
std::vector<std::tuple<int16, uint32, size_t, size_t>> filled_boxes;
auto fill_box = [&](int16 fill_box_ref, uint32 box_usage, size_t box_copy_end) {
size_t copy_size = std::min(box_copy_end - copy_start, BOX_SIZE - box_usage);
memcpy(_boxes[fill_box_ref].data() + box_usage,
_read_slice->data() + copy_start - start_offset, copy_size);
filled_boxes.emplace_back(fill_box_ref, box_usage, copy_start, copy_start + copy_size);
copy_start += copy_size;
_last_box_ref = fill_box_ref;
_last_box_usage = box_usage + copy_size;
_box_ref[fill_box_ref]++;
if (box_usage == 0) {
_remaining -= BOX_SIZE;
}
};
for (int fill_range_index = range_index;
fill_range_index < _random_access_ranges.size() && copy_start < copy_end;
++fill_range_index) {
RangeCachedData& fill_range_cache = _range_cached_data[fill_range_index];
DCHECK(fill_range_cache.empty());
fill_range_cache.reset();
const PrefetchRange& fill_range = _random_access_ranges[fill_range_index];
if (fill_range.start_offset > copy_start) {
// don't copy hollow data
size_t hollow_size = fill_range.start_offset - copy_start;
DCHECK_GT(copy_end - copy_start, hollow_size);
copy_start += hollow_size;
}
const size_t range_copy_end = std::min(copy_end, fill_range.end_offset);
// reuse the remaining capacity of last box
if (_last_box_ref >= 0 && _last_box_usage < BOX_SIZE) {
fill_box(_last_box_ref, _last_box_usage, range_copy_end);
}
// reuse the former released box
for (int16 i = 0; i < _boxes.size() && copy_start < range_copy_end; ++i) {
if (_box_ref[i] == 0) {
fill_box(i, 0, range_copy_end);
}
}
// apply for new box to copy data
while (copy_start < range_copy_end && _boxes.size() < NUM_BOX) {
_boxes.emplace_back(BOX_SIZE);
_box_ref.emplace_back(0);
fill_box(_boxes.size() - 1, 0, range_copy_end);
}
DCHECK_EQ(copy_start, range_copy_end);
if (!filled_boxes.empty()) {
fill_range_cache.start_offset = std::get<2>(filled_boxes[0]);
fill_range_cache.end_offset = std::get<3>(filled_boxes.back());
for (auto& tuple : filled_boxes) {
fill_range_cache.ref_box.emplace_back(std::get<0>(tuple));
fill_range_cache.box_start_offset.emplace_back(std::get<1>(tuple));
fill_range_cache.box_end_offset.emplace_back(
std::get<1>(tuple) + std::get<3>(tuple) - std::get<2>(tuple));
}
filled_boxes.clear();
}
}
return Status::OK();
}
// there exists occasions where the buffer is already closed but
// some prior tasks are still queued in thread pool, so we have to check whether
// the buffer is closed each time the condition variable is notified.
void PrefetchBuffer::reset_offset(size_t offset) {
{
std::unique_lock lck {_lock};
if (!_prefetched.wait_for(
lck, std::chrono::milliseconds(config::buffered_reader_read_timeout_ms),
[this]() { return _buffer_status != BufferStatus::PENDING; })) {
_prefetch_status = Status::TimedOut("time out when reset prefetch buffer");
return;
}
if (UNLIKELY(_buffer_status == BufferStatus::CLOSED)) {
_prefetched.notify_all();
return;
}
_buffer_status = BufferStatus::RESET;
_offset = offset;
_prefetched.notify_all();
}
if (UNLIKELY(offset >= _file_range.end_offset)) {
_len = 0;
_exceed = true;
return;
} else {
_exceed = false;
}
_prefetch_status = ExecEnv::GetInstance()->buffered_reader_prefetch_thread_pool()->submit_func(
[buffer_ptr = shared_from_this()]() { buffer_ptr->prefetch_buffer(); });
}
// only this function would run concurrently in another thread
void PrefetchBuffer::prefetch_buffer() {
{
std::unique_lock lck {_lock};
if (!_prefetched.wait_for(
lck, std::chrono::milliseconds(config::buffered_reader_read_timeout_ms),
[this]() {
return _buffer_status == BufferStatus::RESET ||
_buffer_status == BufferStatus::CLOSED;
})) {
_prefetch_status = Status::TimedOut("time out when invoking prefetch buffer");
return;
}
// in case buffer is already closed
if (UNLIKELY(_buffer_status == BufferStatus::CLOSED)) {
_prefetched.notify_all();
return;
}
_buffer_status = BufferStatus::PENDING;
_prefetched.notify_all();
}
int read_range_index = search_read_range(_offset);
size_t buf_size;
if (read_range_index == -1) {
buf_size =
_file_range.end_offset - _offset > _size ? _size : _file_range.end_offset - _offset;
} else {
buf_size = merge_small_ranges(_offset, read_range_index);
}
_len = 0;
Status s;
{
SCOPED_RAW_TIMER(&_statis.read_time);
s = _reader->read_at(_offset, Slice {_buf.get(), buf_size}, &_len, _io_ctx);
}
if (UNLIKELY(s.ok() && buf_size != _len)) {
// This indicates that the data size returned by S3 object storage is smaller than what we requested,
// which seems to be a violation of the S3 protocol since our request range was valid.
// We currently consider this situation a bug and will treat this task as a failure.
s = Status::InternalError("Data size returned by S3 is smaller than requested");
LOG(WARNING) << "Data size returned by S3 is smaller than requested" << _reader->path()
<< " request bytes " << buf_size << " returned size " << _len;
}
g_bytes_downloaded << _len;
_statis.prefetch_request_io += 1;
_statis.prefetch_request_bytes += _len;
std::unique_lock lck {_lock};
if (!_prefetched.wait_for(lck,
std::chrono::milliseconds(config::buffered_reader_read_timeout_ms),
[this]() { return _buffer_status == BufferStatus::PENDING; })) {
_prefetch_status = Status::TimedOut("time out when invoking prefetch buffer");
return;
}
if (!s.ok() && _offset < _reader->size()) {
// We should print the error msg since this buffer might not be accessed by the consumer
// which would result in the status being missed
LOG_WARNING("prefetch path {} failed, offset {}, error {}", _reader->path().native(),
_offset, s.to_string());
_prefetch_status = std::move(s);
}
_buffer_status = BufferStatus::PREFETCHED;
_prefetched.notify_all();
// eof would come up with len == 0, it would be handled by read_buffer
}
int PrefetchBuffer::search_read_range(size_t off) const {
if (_random_access_ranges == nullptr || _random_access_ranges->empty()) {
return -1;
}
const std::vector<PrefetchRange>& random_access_ranges = *_random_access_ranges;
int left = 0, right = random_access_ranges.size() - 1;
do {
int mid = left + (right - left) / 2;
const PrefetchRange& range = random_access_ranges[mid];
if (range.start_offset <= off && range.end_offset > off) {
return mid;
} else if (range.start_offset > off) {
right = mid;
} else {
left = mid + 1;
}
} while (left < right);
if (random_access_ranges[right].start_offset > off) {
return right;
} else {
return -1;
}
}
size_t PrefetchBuffer::merge_small_ranges(size_t off, int range_index) const {
if (_random_access_ranges == nullptr || _random_access_ranges->empty()) {
return _size;
}
int64 remaining = _size;
const std::vector<PrefetchRange>& random_access_ranges = *_random_access_ranges;
while (remaining > 0 && range_index < random_access_ranges.size()) {
const PrefetchRange& range = random_access_ranges[range_index];
if (range.start_offset <= off && range.end_offset > off) {
remaining -= range.end_offset - off;
off = range.end_offset;
range_index++;
} else if (range.start_offset > off) {
// merge small range
size_t hollow = range.start_offset - off;
if (hollow < remaining) {
remaining -= hollow;
off = range.start_offset;
} else {
break;
}
} else {
DCHECK(false);
}
}
if (remaining < 0 || remaining == _size) {
remaining = 0;
}
return _size - remaining;
}
Status PrefetchBuffer::read_buffer(size_t off, const char* out, size_t buf_len,
size_t* bytes_read) {
if (UNLIKELY(off >= _file_range.end_offset)) {
// Reader can read out of [start_offset, end_offset) by synchronous method.
return _reader->read_at(off, Slice {out, buf_len}, bytes_read, _io_ctx);
}
if (_exceed) {
reset_offset((off / _size) * _size);
return read_buffer(off, out, buf_len, bytes_read);
}
auto start = std::chrono::steady_clock::now();
// The baseline time is calculated by dividing the size of each buffer by MB/s.
// If it exceeds this value, it is considered a slow I/O operation.
constexpr auto read_time_baseline = std::chrono::seconds(s_max_pre_buffer_size / 1024 / 1024);
{
std::unique_lock lck {_lock};
// buffer must be prefetched or it's closed
if (!_prefetched.wait_for(
lck, std::chrono::milliseconds(config::buffered_reader_read_timeout_ms),
[this]() {
return _buffer_status == BufferStatus::PREFETCHED ||
_buffer_status == BufferStatus::CLOSED;
})) {
_prefetch_status = Status::TimedOut("time out when read prefetch buffer");
return _prefetch_status;
}
if (UNLIKELY(BufferStatus::CLOSED == _buffer_status)) {
return Status::OK();
}
}
auto duration = std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::steady_clock::now() - start);
if (duration > read_time_baseline) [[unlikely]] {
LOG_WARNING("The prefetch io is too slow");
}
RETURN_IF_ERROR(_prefetch_status);
// there is only parquet would do not sequence read
// it would read the end of the file first
if (UNLIKELY(!contains(off))) {
reset_offset((off / _size) * _size);
return read_buffer(off, out, buf_len, bytes_read);
}
if (UNLIKELY(0 == _len || _offset + _len < off)) {
return Status::OK();
}
{
LIMIT_REMOTE_SCAN_IO(bytes_read);
// [0]: maximum len trying to read, [1] maximum length buffer can provide, [2] actual len buffer has
size_t read_len = std::min({buf_len, _offset + _size - off, _offset + _len - off});
{
SCOPED_RAW_TIMER(&_statis.copy_time);
memcpy((void*)out, _buf.get() + (off - _offset), read_len);
}
*bytes_read = read_len;
_statis.request_io += 1;
_statis.request_bytes += read_len;
}
if (off + *bytes_read == _offset + _len) {
reset_offset(_offset + _whole_buffer_size);
}
return Status::OK();
}
void PrefetchBuffer::close() {
std::unique_lock lck {_lock};
// in case _reader still tries to write to the buf after we close the buffer
if (!_prefetched.wait_for(lck,
std::chrono::milliseconds(config::buffered_reader_read_timeout_ms),
[this]() { return _buffer_status != BufferStatus::PENDING; })) {
_prefetch_status = Status::TimedOut("time out when close prefetch buffer");
return;
}
_buffer_status = BufferStatus::CLOSED;
_prefetched.notify_all();
}
void PrefetchBuffer::_collect_profile_before_close() {
if (_sync_profile != nullptr) {
_sync_profile(*this);
}
}
// buffered reader
PrefetchBufferedReader::PrefetchBufferedReader(RuntimeProfile* profile, io::FileReaderSPtr reader,
PrefetchRange file_range, const IOContext* io_ctx,
int64_t buffer_size)
: _reader(std::move(reader)), _file_range(file_range), _io_ctx(io_ctx) {
if (buffer_size == -1L) {
buffer_size = config::remote_storage_read_buffer_mb * 1024 * 1024;
}
_size = _reader->size();
_whole_pre_buffer_size = buffer_size;
_file_range.end_offset = std::min(_file_range.end_offset, _size);
int buffer_num = buffer_size > s_max_pre_buffer_size ? buffer_size / s_max_pre_buffer_size : 1;
std::function<void(PrefetchBuffer&)> sync_buffer = nullptr;
if (profile != nullptr) {
const char* prefetch_buffered_reader = "PrefetchBufferedReader";
ADD_TIMER(profile, prefetch_buffered_reader);
auto copy_time = ADD_CHILD_TIMER(profile, "CopyTime", prefetch_buffered_reader);
auto read_time = ADD_CHILD_TIMER(profile, "ReadTime", prefetch_buffered_reader);
auto prefetch_request_io =
ADD_CHILD_COUNTER(profile, "PreRequestIO", TUnit::UNIT, prefetch_buffered_reader);
auto prefetch_request_bytes = ADD_CHILD_COUNTER(profile, "PreRequestBytes", TUnit::BYTES,
prefetch_buffered_reader);
auto request_io =
ADD_CHILD_COUNTER(profile, "RequestIO", TUnit::UNIT, prefetch_buffered_reader);
auto request_bytes =
ADD_CHILD_COUNTER(profile, "RequestBytes", TUnit::BYTES, prefetch_buffered_reader);
sync_buffer = [=](PrefetchBuffer& buf) {
COUNTER_UPDATE(copy_time, buf._statis.copy_time);
COUNTER_UPDATE(read_time, buf._statis.read_time);
COUNTER_UPDATE(prefetch_request_io, buf._statis.prefetch_request_io);
COUNTER_UPDATE(prefetch_request_bytes, buf._statis.prefetch_request_bytes);
COUNTER_UPDATE(request_io, buf._statis.request_io);
COUNTER_UPDATE(request_bytes, buf._statis.request_bytes);
};
}
// set the _cur_offset of this reader as same as the inner reader's,
// to make sure the buffer reader will start to read at right position.
for (int i = 0; i < buffer_num; i++) {
_pre_buffers.emplace_back(std::make_shared<PrefetchBuffer>(
_file_range, s_max_pre_buffer_size, _whole_pre_buffer_size, _reader.get(), _io_ctx,
sync_buffer));
}
}
PrefetchBufferedReader::~PrefetchBufferedReader() {
/// Better not to call virtual functions in a destructor.
static_cast<void>(_close_internal());
}
Status PrefetchBufferedReader::read_at_impl(size_t offset, Slice result, size_t* bytes_read,
const IOContext* io_ctx) {
if (!_initialized) {
reset_all_buffer(offset);
_initialized = true;
}
if (UNLIKELY(result.get_size() == 0 || offset >= size())) {
*bytes_read = 0;
return Status::OK();
}
size_t nbytes = result.get_size();
int actual_bytes_read = 0;
while (actual_bytes_read < nbytes && offset < size()) {
size_t read_num = 0;
auto buffer_pos = get_buffer_pos(offset);
RETURN_IF_ERROR(
_pre_buffers[buffer_pos]->read_buffer(offset, result.get_data() + actual_bytes_read,
nbytes - actual_bytes_read, &read_num));
actual_bytes_read += read_num;
offset += read_num;
}
*bytes_read = actual_bytes_read;
return Status::OK();
}
Status PrefetchBufferedReader::close() {
return _close_internal();
}
Status PrefetchBufferedReader::_close_internal() {
if (!_closed) {
_closed = true;
std::for_each(_pre_buffers.begin(), _pre_buffers.end(),
[](std::shared_ptr<PrefetchBuffer>& buffer) { buffer->close(); });
return _reader->close();
}
return Status::OK();
}
void PrefetchBufferedReader::_collect_profile_before_close() {
std::for_each(_pre_buffers.begin(), _pre_buffers.end(),
[](std::shared_ptr<PrefetchBuffer>& buffer) {
buffer->collect_profile_before_close();
});
if (_reader != nullptr) {
_reader->collect_profile_before_close();
}
}
// InMemoryFileReader
InMemoryFileReader::InMemoryFileReader(io::FileReaderSPtr reader) : _reader(std::move(reader)) {
_size = _reader->size();
}
InMemoryFileReader::~InMemoryFileReader() {
static_cast<void>(_close_internal());
}
Status InMemoryFileReader::close() {
return _close_internal();
}
Status InMemoryFileReader::_close_internal() {
if (!_closed) {
_closed = true;
return _reader->close();
}
return Status::OK();
}
Status InMemoryFileReader::read_at_impl(size_t offset, Slice result, size_t* bytes_read,
const IOContext* io_ctx) {
if (_data == nullptr) {
_data = std::make_unique_for_overwrite<char[]>(_size);
size_t file_size = 0;
RETURN_IF_ERROR(_reader->read_at(0, Slice(_data.get(), _size), &file_size, io_ctx));
DCHECK_EQ(file_size, _size);
}
if (UNLIKELY(offset > _size)) {
return Status::IOError("Out of bounds access");
}
*bytes_read = std::min(result.size, _size - offset);
memcpy(result.data, _data.get() + offset, *bytes_read);
return Status::OK();
}
void InMemoryFileReader::_collect_profile_before_close() {
if (_reader != nullptr) {
_reader->collect_profile_before_close();
}
}
// BufferedFileStreamReader
BufferedFileStreamReader::BufferedFileStreamReader(io::FileReaderSPtr file, uint64_t offset,
uint64_t length, size_t max_buf_size)
: _file(file),
_file_start_offset(offset),
_file_end_offset(offset + length),
_max_buf_size(max_buf_size) {}
Status BufferedFileStreamReader::read_bytes(const uint8_t** buf, uint64_t offset,
const size_t bytes_to_read, const IOContext* io_ctx) {
if (offset < _file_start_offset || offset >= _file_end_offset ||
offset + bytes_to_read > _file_end_offset) {
return Status::IOError(
"Out-of-bounds Access: offset={}, bytes_to_read={}, file_start={}, "
"file_end={}",
offset, bytes_to_read, _file_start_offset, _file_end_offset);
}
int64_t end_offset = offset + bytes_to_read;
if (_buf_start_offset <= offset && _buf_end_offset >= end_offset) {
*buf = _buf.get() + offset - _buf_start_offset;
return Status::OK();
}
size_t buf_size = std::max(_max_buf_size, bytes_to_read);
if (_buf_size < buf_size) {
std::unique_ptr<uint8_t[]> new_buf(new uint8_t[buf_size]);
if (offset >= _buf_start_offset && offset < _buf_end_offset) {
memcpy(new_buf.get(), _buf.get() + offset - _buf_start_offset,
_buf_end_offset - offset);
}
_buf = std::move(new_buf);
_buf_size = buf_size;
} else if (offset > _buf_start_offset && offset < _buf_end_offset) {
memmove(_buf.get(), _buf.get() + offset - _buf_start_offset, _buf_end_offset - offset);
}
if (offset < _buf_start_offset || offset >= _buf_end_offset) {
_buf_end_offset = offset;
}
_buf_start_offset = offset;
int64_t buf_remaining = _buf_end_offset - _buf_start_offset;
int64_t to_read = std::min(_buf_size - buf_remaining, _file_end_offset - _buf_end_offset);
int64_t has_read = 0;
SCOPED_RAW_TIMER(&_statistics.read_time);
while (has_read < to_read) {
size_t loop_read = 0;
Slice result(_buf.get() + buf_remaining + has_read, to_read - has_read);
RETURN_IF_ERROR(_file->read_at(_buf_end_offset + has_read, result, &loop_read, io_ctx));
_statistics.read_calls++;
if (loop_read == 0) {
break;
}
has_read += loop_read;
}
if (has_read != to_read) {
return Status::Corruption("Try to read {} bytes, but received {} bytes", to_read, has_read);
}
_statistics.read_bytes += to_read;
_buf_end_offset += to_read;
*buf = _buf.get();
return Status::OK();
}
Status BufferedFileStreamReader::read_bytes(Slice& slice, uint64_t offset,
const IOContext* io_ctx) {
return read_bytes((const uint8_t**)&slice.data, offset, slice.size, io_ctx);
}
Result<io::FileReaderSPtr> DelegateReader::create_file_reader(
RuntimeProfile* profile, const FileSystemProperties& system_properties,
const FileDescription& file_description, const io::FileReaderOptions& reader_options,
AccessMode access_mode, const IOContext* io_ctx, const PrefetchRange file_range) {
return FileFactory::create_file_reader(system_properties, file_description, reader_options,
profile)
.transform([&](auto&& reader) -> io::FileReaderSPtr {
if (reader->size() < config::in_memory_file_size &&
typeid_cast<io::S3FileReader*>(reader.get())) {
return std::make_shared<InMemoryFileReader>(std::move(reader));
}
if (access_mode == AccessMode::SEQUENTIAL) {
bool is_thread_safe = false;
if (typeid_cast<io::S3FileReader*>(reader.get())) {
is_thread_safe = true;
} else if (auto* cached_reader =
typeid_cast<io::CachedRemoteFileReader*>(reader.get());
cached_reader &&
typeid_cast<io::S3FileReader*>(cached_reader->get_remote_reader())) {
is_thread_safe = true;
}
if (is_thread_safe) {
// PrefetchBufferedReader needs thread-safe reader to prefetch data concurrently.
return std::make_shared<io::PrefetchBufferedReader>(
profile, std::move(reader), file_range, io_ctx);
}
}
return reader;
});
}
Status LinearProbeRangeFinder::get_range_for(int64_t desired_offset,
io::PrefetchRange& result_range) {
while (index < _ranges.size()) {
io::PrefetchRange& range = _ranges[index];
if (range.end_offset > desired_offset) {
if (range.start_offset > desired_offset) [[unlikely]] {
return Status::InvalidArgument("Invalid desiredOffset");
}
result_range = range;
return Status::OK();
}
++index;
}
return Status::InvalidArgument("Invalid desiredOffset");
}
RangeCacheFileReader::RangeCacheFileReader(RuntimeProfile* profile, io::FileReaderSPtr inner_reader,
std::shared_ptr<RangeFinder> range_finder)
: _profile(profile),
_inner_reader(std::move(inner_reader)),
_range_finder(std::move(range_finder)) {
_size = _inner_reader->size();
uint64_t max_cache_size =
std::max((uint64_t)4096, (uint64_t)_range_finder->get_max_range_size());
_cache = OwnedSlice(max_cache_size);
if (_profile != nullptr) {
const char* random_profile = "RangeCacheFileReader";
ADD_TIMER_WITH_LEVEL(_profile, random_profile, 1);
_request_io =
ADD_CHILD_COUNTER_WITH_LEVEL(_profile, "RequestIO", TUnit::UNIT, random_profile, 1);
_request_bytes = ADD_CHILD_COUNTER_WITH_LEVEL(_profile, "RequestBytes", TUnit::BYTES,
random_profile, 1);
_request_time = ADD_CHILD_TIMER_WITH_LEVEL(_profile, "RequestTime", random_profile, 1);
_read_to_cache_time =
ADD_CHILD_TIMER_WITH_LEVEL(_profile, "ReadToCacheTime", random_profile, 1);
_cache_refresh_count = ADD_CHILD_COUNTER_WITH_LEVEL(_profile, "CacheRefreshCount",
TUnit::UNIT, random_profile, 1);
_read_to_cache_bytes = ADD_CHILD_COUNTER_WITH_LEVEL(_profile, "ReadToCacheBytes",
TUnit::BYTES, random_profile, 1);
}
}
Status RangeCacheFileReader::read_at_impl(size_t offset, Slice result, size_t* bytes_read,
const IOContext* io_ctx) {
auto request_size = result.size;
_cache_statistics.request_io++;
_cache_statistics.request_bytes += request_size;
SCOPED_RAW_TIMER(&_cache_statistics.request_time);
PrefetchRange range;
if (_range_finder->get_range_for(offset, range)) [[likely]] {
if (_current_start_offset != range.start_offset) { // need read new range to cache.
auto range_size = range.end_offset - range.start_offset;
_cache_statistics.cache_refresh_count++;
_cache_statistics.read_to_cache_bytes += range_size;
SCOPED_RAW_TIMER(&_cache_statistics.read_to_cache_time);
Slice cache_slice = {_cache.data(), range_size};
RETURN_IF_ERROR(
_inner_reader->read_at(range.start_offset, cache_slice, bytes_read, io_ctx));
if (*bytes_read != range_size) [[unlikely]] {
return Status::InternalError(
"RangeCacheFileReader use inner reader read bytes {} not eq expect size {}",
*bytes_read, range_size);
}
_current_start_offset = range.start_offset;
}
int64_t buffer_offset = offset - _current_start_offset;
memcpy(result.data, _cache.data() + buffer_offset, request_size);
*bytes_read = request_size;
return Status::OK();
} else {
return Status::InternalError("RangeCacheFileReader read not in Ranges. Offset = {}",
offset);
// RETURN_IF_ERROR(_inner_reader->read_at(offset, result , bytes_read, io_ctx));
// return Status::OK();
// think return error is ok,otherwise it will cover up the error.
}
}
void RangeCacheFileReader::_collect_profile_before_close() {
if (_profile != nullptr) {
COUNTER_UPDATE(_request_io, _cache_statistics.request_io);
COUNTER_UPDATE(_request_bytes, _cache_statistics.request_bytes);
COUNTER_UPDATE(_request_time, _cache_statistics.request_time);
COUNTER_UPDATE(_read_to_cache_time, _cache_statistics.read_to_cache_time);
COUNTER_UPDATE(_cache_refresh_count, _cache_statistics.cache_refresh_count);
COUNTER_UPDATE(_read_to_cache_bytes, _cache_statistics.read_to_cache_bytes);
if (_inner_reader != nullptr) {
_inner_reader->collect_profile_before_close();
}
}
}
} // namespace io
} // namespace doris