forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layer_norm_kernel.cpp
297 lines (283 loc) · 9.44 KB
/
layer_norm_kernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#include <ATen/native/layer_norm.h>
#include <cmath>
#include <ATen/ATen.h>
#include <ATen/CPUApplyUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/Parallel.h>
namespace at {
namespace native {
namespace {
template <typename T>
void LayerNormKernelImplInternal(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
T eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
using Vec = vec::Vectorized<T>;
DCHECK_EQ(X.numel(), M * N);
DCHECK(!gamma.defined() || gamma.numel() == N);
DCHECK(!beta.defined() || beta.numel() == N);
T* X_data = X.data_ptr<T>();
const T* gamma_data = gamma.defined() ? gamma.data_ptr<T>() : nullptr;
const T* beta_data = beta.defined() ? beta.data_ptr<T>() : nullptr;
T* Y_data = Y->data_ptr<T>();
T* mean_data = mean->data_ptr<T>();
T* rstd_data = rstd->data_ptr<T>();
const T c = T(1) / static_cast<T>(N);
const bool gamma_null = gamma_data == nullptr;
const bool beta_null = beta_data == nullptr;
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
for (int64_t i = start; i < end; ++i) {
T* X_ptr = X_data + i * N;
T* Y_ptr = Y_data + i * N;
T mean_val = vec::reduce_all<T>(
[](Vec& x, Vec& y) { return x + y; },
X_ptr,
N);
T rstd_val = vec::map_reduce_all<T>(
[](Vec x) { return x * x; },
[](Vec x, Vec y) { return x + y; },
X_ptr,
N);
mean_val *= c;
rstd_val = std::max(rstd_val * c - mean_val * mean_val, T(0));
rstd_val = T(1) / std::sqrt(rstd_val + eps);
const T scale = rstd_val;
const T bias = -rstd_val * mean_val;
if (gamma_null || beta_null) {
for (int64_t j = 0; j < N; ++j) {
const T gamma_v = gamma_null ? T(1) : gamma_data[j];
const T beta_v = beta_null ? T(0) : beta_data[j];
Y_ptr[j] = (X_ptr[j] * scale + bias) * gamma_v + beta_v;
}
} else {
vec::map3<T>(
[scale, bias](Vec x, Vec gamma, Vec beta) {
return (x * Vec(scale) + Vec(bias)) * gamma + beta;
},
Y_ptr,
X_ptr,
gamma_data,
beta_data,
N);
}
mean_data[i] = mean_val;
rstd_data[i] = rstd_val;
}
});
}
void LayerNormKernelImpl(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
double eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
AT_DISPATCH_FLOATING_TYPES(X.scalar_type(), "LayerNormKernelImpl", [&]() {
LayerNormKernelImplInternal<scalar_t>(
X, gamma, beta, M, N, static_cast<scalar_t>(eps), Y, mean, rstd);
});
}
template <typename T>
void LayerNormBackwardKernelImplInternal(
const Tensor& dY,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const Tensor& gamma,
int64_t M,
int64_t N,
Tensor* dX,
Tensor* dgamma,
Tensor* dbeta) {
using Vec = vec::Vectorized<T>;
DCHECK_EQ(dY.numel(), M * N);
DCHECK_EQ(X.numel(), M * N);
DCHECK_EQ(mean.numel(), M);
DCHECK_EQ(rstd.numel(), M);
DCHECK(!gamma.defined() || gamma.numel() == N);
const T* dY_data = dY.template data_ptr<T>();
const T* X_data = X.template data_ptr<T>();
const T* mean_data = mean.template data_ptr<T>();
const T* rstd_data = rstd.template data_ptr<T>();
const T* gamma_data = gamma.defined() ? gamma.template data_ptr<T>() : nullptr;
T* dX_data = dX->defined() ? dX->template data_ptr<T>() : nullptr;
T* dgamma_data = dgamma->defined() ? dgamma->template data_ptr<T>() : nullptr;
T* dbeta_data = dbeta->defined() ? dbeta->template data_ptr<T>() : nullptr;
const T scale = T(1) / static_cast<T>(N);
const bool gamma_null = gamma_data == nullptr;
const bool dX_null = dX_data == nullptr;
const bool dgamma_null = dgamma_data == nullptr;
const bool dbeta_null = dbeta_data == nullptr;
// 1. Use two path parallel reduction for dgamma and dbeta:
// First path: allocate an immediate buffer of size {2, max_threads, N},
// dgamma_buffer = buffer[0], dbeta_buffer = buffer[1]
// Parallel along dim0 and reduce dY and X along dim0 to buffer.
// Second path: parallel along dim1 and reduce buffer to dgamma and dbeta.
//
// 2. Fuse first path of dgamma/dbeta with dX to reuse X[i] and dY[i] in L1 cache.
//
int num_threads = at::get_num_threads();
Tensor buffer = at::empty({0}, X.options());
T* buffer_data = nullptr;
if (!dgamma_null || !dbeta_null) {
// zero the immediate buffer and skip zero dgamma and dbeta
buffer.resize_({2, num_threads, N}).zero_();
buffer_data = buffer.template data_ptr<T>();
}
// First path of dgamma/dbeta and dX
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
int tid = at::get_thread_num();
TORCH_CHECK(tid < num_threads,
"expect thread id smaller than ", num_threads, ", got thread id ", tid);
T* dgamma_buffer_ptr = dgamma_null ? nullptr : buffer_data + tid * N;
T* dbeta_buffer_ptr = dbeta_null ? nullptr : buffer_data + num_threads * N + tid * N;
for (int64_t i = start; i < end; ++i) {
const T* dY_ptr = dY_data + i * N;
const T* X_ptr = X_data + i * N;
if (!dgamma_null) {
const T a = rstd_data[i];
const T b = -a * mean_data[i];
// Scalar math:
// for (int64_t j = 0; j < N; ++j) {
// dgamma_data[j] += dY_ptr[j] * (a * X_ptr[j] + b);
// }
vec::map3<T>(
[a, b](Vec dgamma, Vec dy, Vec x) { return dgamma + dy * (Vec(a) * x + Vec(b)); },
dgamma_buffer_ptr,
dgamma_buffer_ptr,
dY_ptr,
X_ptr,
N);
}
if (!dbeta_null) {
// Scalar math:
// for (int64_t j = 0; j < N; ++j) {
// dbeta_data[j] += dY_ptr[j];
// }
vec::map2<T>(
[](Vec dbeta, Vec dy) { return dbeta + dy; },
dbeta_buffer_ptr,
dbeta_buffer_ptr,
dY_ptr,
N);
}
if (!dX_null) {
T* dX_ptr = dX_data + i * N;
T ds = T(0);
T db = T(0);
// Scalar math:
// for (int64_t j = 0; j < N; ++j) {
// const T gamma_v = gamma_null ? T(1) : gamma_data[j];
// ds += dY_ptr[j] * X_ptr[j] * gamma_v;
// db += dY_ptr[j] * gamma_v;
// }
if (gamma_null) {
ds = vec::map2_reduce_all<T>(
[](Vec x, Vec y) { return x * y; },
[](Vec x, Vec y) { return x + y; },
dY_ptr,
X_ptr,
N);
db = vec::reduce_all<T>(
[](Vec& x, Vec& y) { return x + y; },
dY_ptr,
N);
} else {
ds = vec::map3_reduce_all<T>(
[](Vec x, Vec y, Vec z) { return x * y * z; },
[](Vec x, Vec y) { return x + y; },
dY_ptr,
X_ptr,
gamma_data,
N);
db = vec::map2_reduce_all<T>(
[](Vec x, Vec y) { return x * y; },
[](Vec x, Vec y) { return x + y; },
dY_ptr,
gamma_data,
N);
}
const T a = rstd_data[i];
const T b = (db * mean_data[i] - ds) * a * a * a * scale;
const T c = -b * mean_data[i] - db * a * scale;
// Scalar math:
// for (int64_t j = 0; j < N; ++j) {
// const T gamma_v = gamma_null ? T(1) : gamma_data[j];
// dX_ptr[j] = a * dY_ptr[j] * gamma_v + b * X_ptr[j] + c;
// }
if (gamma_null) {
vec::map2<T>(
[a, b, c](Vec dy, Vec x) { return Vec(a) * dy + Vec(b) * x + Vec(c); },
dX_ptr,
dY_ptr,
X_ptr,
N);
} else {
vec::map3<T>(
[a, b, c](Vec dy, Vec gamma, Vec x) { return Vec(a) * dy * gamma + Vec(b) * x + Vec(c); },
dX_ptr,
dY_ptr,
gamma_data,
X_ptr,
N);
}
}
}
});
// Second path of dgamma/dbeta
if (buffer_data != nullptr) {
parallel_for(0, N, 1, [&](int64_t start, int64_t end) {
for (int64_t j = start; j < end; ++j) {
T dgamma_v = T(0);
T dbeta_v = T(0);
for (int64_t i = 0; i < num_threads; ++i) {
dgamma_v += buffer_data[i * N + j];
dbeta_v += buffer_data[num_threads * N + i * N + j];
}
if (!dgamma_null) {
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
dgamma_data[j] = dgamma_v;
}
if (!dbeta_null) {
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
dbeta_data[j] = dbeta_v;
}
}
});
}
}
void LayerNormBackwardKernelImpl(
const Tensor& dY,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const Tensor& gamma,
int64_t M,
int64_t N,
Tensor* dX,
Tensor* dgamma,
Tensor* dbeta) {
AT_DISPATCH_FLOATING_TYPES(
X.scalar_type(), "LayerNormBackwardKernelImpl", [&]() {
LayerNormBackwardKernelImplInternal<scalar_t>(
dY, X, mean, rstd, gamma, M, N, dX, dgamma, dbeta);
});
}
} // namespace
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_DISPATCH(LayerNormKernel, &LayerNormKernelImpl);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_DISPATCH(LayerNormBackwardKernel, &LayerNormBackwardKernelImpl);
} // namespace native
} // namespace at