forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SparseTensorUtils.cpp
115 lines (107 loc) · 4.03 KB
/
SparseTensorUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include <ATen/SparseTensorUtils.h>
#include <ATen/ATen.h>
#include <ATen/SparseTensorImpl.h>
#include <ATen/Parallel.h>
namespace at { namespace sparse {
// NOTE [ Flatten Sparse Indices ]
// This helper function flattens a sparse indices tensor (a Tensor) into a 1D
// indices tensor. E.g.,
// input = [[2, 4, 0],
// [3, 1, 10]]
// full_size = [2, 12]
// output = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 10 ] = [27, 49, 10]
//
// In other words, assuming that each `indices[i, :]` is a valid index to a
// tensor `t` of shape `full_size`. This returns the corresponding indices to
// the flattened tensor `t.reshape( prod(full_size[:indices.size(0)]), -1 )`.
// if forceClone is true, the result will forced to be a clone of self.
// if force_clone is true, the result will forced to be a clone of self.
Tensor flatten_indices(const Tensor& indices, IntArrayRef full_size, bool force_clone /*= false*/) {
int64_t sparse_dim = indices.size(0);
if (sparse_dim == 1) {
if (force_clone) {
return indices.squeeze(0).clone(at::MemoryFormat::Contiguous);
} else {
return indices.squeeze(0);
}
} else {
std::vector<int64_t> indices_mult_cpu_vec;
indices_mult_cpu_vec.reserve(sparse_dim);
int64_t mult = 1;
for (int64_t i = sparse_dim - 1; i >= 0; i--) {
indices_mult_cpu_vec[i] = mult;
mult *= full_size[i];
}
auto indices_mult_cpu = at::from_blob(
indices_mult_cpu_vec.data(),
// NOLINTNEXTLINE(bugprone-argument-comment)
/*size=*/{sparse_dim, 1},
indices.options().device(kCPU));
// NB: must be blocking because this blob may be freed after this closure,
// and non_blocking copy will see garbage.
auto indices_mult = indices_mult_cpu.to(indices.device(), /*non_blocking=*/false);
// Ideally we want matmul but matmul is slow on CPU Long and not implemented
// on CUDA Long. So mul is faster.
return indices.mul(indices_mult).sum(0);
}
}
// Flatten sparse tensor's indices from nD to 1D, similar to NOTE [ Flatten Sparse Indices ],
// except this one allows partial flatten: only flatten on specified dims. Note that
// the flatten indices might be uncoalesced if dims_to_flatten.size() < sparse_dim.
// Also if input indices is already coalesced, the flattened indices will also be sorted.
//
// args:
// indices: sparse tensor indices
// sizes: sparse tensor sizes
// dims_to_flatten: a list of dim index to flatten
//
// Ex1:
// indices = [[2, 4, 0],
// [3, 1, 3]]
// sizes = [2, 12]
// dims_to_flatten = [0, 1]
// new_indices = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 3 ] = [27, 49, 3]
//
// Ex2:
// dims_to_flatten = [1]
// new_indices = [ 3, 1, 3 ] # uncoalesced
Tensor flatten_indices_by_dims(const Tensor& indices, const IntArrayRef& sizes, const IntArrayRef& dims_to_flatten){
Tensor new_indices = at::zeros({indices.size(1)}, indices.options());
for (auto d : dims_to_flatten) {
new_indices.mul_(sizes[d]);
new_indices.add_(indices.select(0, d));
}
return new_indices;
}
Tensor coo_to_csr(const int64_t* indices, int64_t dim, int64_t nnz) {
/*
Find the CSR representation for a row `indices` from the COO format
Inputs:
`indices` is the row pointer from COO indices
`dim` is the row dimensionality
`nnz` is the number of non-zeros
Output:
`csr` is a compressed row array in a CSR format
*/
Tensor csr = at::zeros({dim + 1}, kLong);
// TODO: eliminate this conditional when zero-size dims supported correctly
if (nnz > 0) {
auto csr_accessor = csr.accessor<int64_t, 1>();
// Convert the sparse matrix to CSR format
at::parallel_for(0, nnz, 10000, [&](int64_t start, int64_t end) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t h, hp0, hp1;
for (auto i = start; i < end; i++) {
hp0 = indices[i];
hp1 = (i+1 == nnz) ? dim : indices[i+1];
if (hp0 != hp1) {
for (h = hp0; h < hp1; h++) {
csr_accessor[h+1] = i+1;
}
}
}
});
}
return csr;
}
}} // namespace at::sparse