forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ParallelOpenMP.h
109 lines (100 loc) · 2.89 KB
/
ParallelOpenMP.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#pragma once
#include <cstddef>
#include <exception>
#ifdef _OPENMP
#define INTRA_OP_PARALLEL
#include <omp.h>
#endif
namespace at {
template <class F>
inline void parallel_for(
const int64_t begin,
const int64_t end,
const int64_t grain_size,
const F& f) {
TORCH_CHECK(grain_size >= 0);
at::internal::lazy_init_num_threads();
if (begin >= end) {
return;
}
if (end - begin == 1) {
f(begin, end);
return;
}
#ifdef _OPENMP
std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
std::exception_ptr eptr;
// Work around memory leak when using 1 thread in nested "omp parallel"
// caused by some buggy OpenMP versions and the fact that omp_in_parallel()
// returns false when omp_get_max_threads() == 1 inside nested "omp parallel"
// See issue gh-32284
#pragma omp parallel if (omp_get_max_threads() > 1 && !omp_in_parallel() && ((end - begin) > grain_size))
{
// choose number of tasks based on grain size and number of threads
// can't use num_threads clause due to bugs in GOMP's thread pool (See #32008)
int64_t num_threads = omp_get_num_threads();
if (grain_size > 0) {
num_threads = std::min(num_threads, divup((end - begin), grain_size));
}
int64_t tid = omp_get_thread_num();
int64_t chunk_size = divup((end - begin), num_threads);
int64_t begin_tid = begin + tid * chunk_size;
if (begin_tid < end) {
try {
f(begin_tid, std::min(end, chunk_size + begin_tid));
} catch (...) {
if (!err_flag.test_and_set()) {
eptr = std::current_exception();
}
}
}
}
if (eptr) {
std::rethrow_exception(eptr);
}
#else
f(begin, end);
#endif
}
template <class scalar_t, class F, class SF>
inline scalar_t parallel_reduce(
const int64_t begin,
const int64_t end,
const int64_t grain_size,
const scalar_t ident,
const F& f,
const SF& sf) {
TORCH_CHECK(grain_size >= 0);
at::internal::lazy_init_num_threads();
if (begin >= end) {
return ident;
} else if (in_parallel_region() || get_num_threads() == 1) {
return f(begin, end, ident);
} else {
const int64_t num_results = divup((end - begin), grain_size);
std::vector<scalar_t> results(num_results);
scalar_t* results_data = results.data();
std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
std::exception_ptr eptr;
#pragma omp parallel for if ((end - begin) >= grain_size)
for (int64_t id = 0; id < num_results; id++) {
int64_t i = begin + id * grain_size;
try {
results_data[id] = f(i, i + std::min(end - i, grain_size), ident);
} catch (...) {
if (!err_flag.test_and_set()) {
eptr = std::current_exception();
}
}
}
if (eptr) {
std::rethrow_exception(eptr);
}
scalar_t result = ident;
for (auto partial_result : results) {
result = sf(result, partial_result);
}
return result;
}
}
} // namespace at