forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LegacyTHFunctionsCPU.cpp
418 lines (403 loc) · 21.4 KB
/
LegacyTHFunctionsCPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#include <ATen/LegacyTHFunctionsCPU.h>
#include <ATen/ATen.h>
#include <ATen/Utils.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/ExpandUtils.h>
#include <TH/TH.h>
#include <TH/THTensor.hpp>
namespace at {
namespace native {
namespace legacy {
namespace cpu {
namespace {
ScalarType infer_scalar_type(const Tensor & t) {
return t.scalar_type();
}
// NOLINTNEXTLINE(clang-diagnostic-unused-function)
ScalarType infer_scalar_type(const TensorList & tl) {
TORCH_CHECK(tl.size() > 0, "expected a non-empty list of Tensors");
return tl[0].scalar_type();
}
TensorOptions options(ScalarType s) {
return TensorOptions().dtype(s)
.device(DeviceType::CPU)
.layout(kStrided);
}
Allocator* allocator() {
return getCPUAllocator();
}
}
Tensor & _th_nonzero_out(const Tensor & self, Tensor & result) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Bool: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THBoolTensor_nonzero(result_, self_);
break;
}
case ScalarType::Byte: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THByteTensor_nonzero(result_, self_);
break;
}
case ScalarType::Char: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THCharTensor_nonzero(result_, self_);
break;
}
case ScalarType::Double: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THDoubleTensor_nonzero(result_, self_);
break;
}
case ScalarType::Float: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THFloatTensor_nonzero(result_, self_);
break;
}
case ScalarType::Int: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THIntTensor_nonzero(result_, self_);
break;
}
case ScalarType::Long: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THLongTensor_nonzero(result_, self_);
break;
}
case ScalarType::Short: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THShortTensor_nonzero(result_, self_);
break;
}
case ScalarType::Half: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THHalfTensor_nonzero(result_, self_);
break;
}
case ScalarType::BFloat16: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THBFloat16Tensor_nonzero(result_, self_);
break;
}
case ScalarType::ComplexDouble: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THComplexDoubleTensor_nonzero(result_, self_);
break;
}
case ScalarType::ComplexFloat: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_nonzero_out", false, DeviceType::CPU, ScalarType::Long);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero_out", false, DeviceType::CPU, dispatch_scalar_type);
THComplexFloatTensor_nonzero(result_, self_);
break;
}
default:
AT_ERROR("_th_nonzero_out not supported on CPUType for ", dispatch_scalar_type);
}
return result;
}
Tensor _th_nonzero(const Tensor & self) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
auto result_ = c10::make_intrusive<TensorImpl, UndefinedTensorImpl>(c10::Storage(c10::Storage::use_byte_size_t(), 0, allocator(), true),DispatchKey::CPU, scalarTypeToTypeMeta(ScalarType::Long)).release();
auto result = Tensor(c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl>::reclaim(result_));
switch (dispatch_scalar_type) {
case ScalarType::Bool: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THBoolTensor_nonzero(result_, self_);
break;
}
case ScalarType::Byte: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THByteTensor_nonzero(result_, self_);
break;
}
case ScalarType::Char: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THCharTensor_nonzero(result_, self_);
break;
}
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THDoubleTensor_nonzero(result_, self_);
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THFloatTensor_nonzero(result_, self_);
break;
}
case ScalarType::Int: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THIntTensor_nonzero(result_, self_);
break;
}
case ScalarType::Long: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THLongTensor_nonzero(result_, self_);
break;
}
case ScalarType::Short: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THShortTensor_nonzero(result_, self_);
break;
}
case ScalarType::Half: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THHalfTensor_nonzero(result_, self_);
break;
}
case ScalarType::BFloat16: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THBFloat16Tensor_nonzero(result_, self_);
break;
}
case ScalarType::ComplexDouble: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THComplexDoubleTensor_nonzero(result_, self_);
break;
}
case ScalarType::ComplexFloat: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_nonzero", false, DeviceType::CPU, dispatch_scalar_type);
THComplexFloatTensor_nonzero(result_, self_);
break;
}
default:
AT_ERROR("_th_nonzero not supported on CPUType for ", dispatch_scalar_type);
}
return result;
}
Scalar _th_std_var(const Tensor& self, int64_t correction, bool take_sqrt) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_var", false, DeviceType::CPU, dispatch_scalar_type);
return convert<double>(THDoubleTensor_std_var_all(self_, correction, take_sqrt));
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_var", false, DeviceType::CPU, dispatch_scalar_type);
return convert<float>(THFloatTensor_std_var_all(self_, correction, take_sqrt));
break;
}
default:
AT_ERROR("_th_var not supported on CPUType for ", dispatch_scalar_type);
}
}
Tensor & _th_renorm_out(const Tensor & self, const Scalar& p, int64_t dim, const Scalar& maxnorm, Tensor & result) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_renorm_out", false, DeviceType::CPU, dispatch_scalar_type);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_renorm_out", false, DeviceType::CPU, dispatch_scalar_type);
auto p_ = p.toDouble();
auto maxnorm_ = maxnorm.toDouble();
THDoubleTensor_renorm(result_, self_, p_, dim, maxnorm_);
break;
}
case ScalarType::Float: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_renorm_out", false, DeviceType::CPU, dispatch_scalar_type);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_renorm_out", false, DeviceType::CPU, dispatch_scalar_type);
auto p_ = p.toFloat();
auto maxnorm_ = maxnorm.toFloat();
THFloatTensor_renorm(result_, self_, p_, dim, maxnorm_);
break;
}
default:
AT_ERROR("_th_renorm_out not supported on CPUType for ", dispatch_scalar_type);
}
return result;
}
Tensor _th_renorm(const Tensor & self, const Scalar& p, int64_t dim, const Scalar& maxnorm) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
auto result_ = c10::make_intrusive<TensorImpl, UndefinedTensorImpl>(c10::Storage(c10::Storage::use_byte_size_t(), 0, allocator(), true),DispatchKey::CPU, scalarTypeToTypeMeta(dispatch_scalar_type)).release();
auto result = Tensor(c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl>::reclaim(result_));
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_renorm", false, DeviceType::CPU, dispatch_scalar_type);
auto p_ = p.toDouble();
auto maxnorm_ = maxnorm.toDouble();
THDoubleTensor_renorm(result_, self_, p_, dim, maxnorm_);
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_renorm", false, DeviceType::CPU, dispatch_scalar_type);
auto p_ = p.toFloat();
auto maxnorm_ = maxnorm.toFloat();
THFloatTensor_renorm(result_, self_, p_, dim, maxnorm_);
break;
}
default:
AT_ERROR("_th_renorm not supported on CPUType for ", dispatch_scalar_type);
}
return result;
}
Tensor & _th_renorm_(Tensor & self, const Scalar& p, int64_t dim, const Scalar& maxnorm) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_renorm_", false, DeviceType::CPU, dispatch_scalar_type);
auto p_ = p.toDouble();
auto maxnorm_ = maxnorm.toDouble();
THDoubleTensor_renorm(self_, self_, p_, dim, maxnorm_);
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_renorm_", false, DeviceType::CPU, dispatch_scalar_type);
auto p_ = p.toFloat();
auto maxnorm_ = maxnorm.toFloat();
THFloatTensor_renorm(self_, self_, p_, dim, maxnorm_);
break;
}
default:
AT_ERROR("_th_renorm_ not supported on CPUType for ", dispatch_scalar_type);
}
return self;
}
Tensor & _th_histc_out(const Tensor & self, int64_t bins, const Scalar& min, const Scalar& max, Tensor & result) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_histc_out", false, DeviceType::CPU, dispatch_scalar_type);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_histc_out", false, DeviceType::CPU, dispatch_scalar_type);
auto min_ = min.toDouble();
auto max_ = max.toDouble();
THDoubleTensor_histc(result_, self_, bins, min_, max_);
break;
}
case ScalarType::Float: {
auto result_ = checked_dense_tensor_unwrap(result, "result", 0, "_th_histc_out", false, DeviceType::CPU, dispatch_scalar_type);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_histc_out", false, DeviceType::CPU, dispatch_scalar_type);
auto min_ = min.toFloat();
auto max_ = max.toFloat();
THFloatTensor_histc(result_, self_, bins, min_, max_);
break;
}
default:
AT_ERROR("_th_histc_out not supported on CPUType for ", dispatch_scalar_type);
}
return result;
}
Tensor _th_histc(const Tensor & self, int64_t bins, const Scalar& min, const Scalar& max) {
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
auto result_ = c10::make_intrusive<TensorImpl, UndefinedTensorImpl>(c10::Storage(c10::Storage::use_byte_size_t(), 0, allocator(), true),DispatchKey::CPU, scalarTypeToTypeMeta(dispatch_scalar_type)).release();
auto result = Tensor(c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl>::reclaim(result_));
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_histc", false, DeviceType::CPU, dispatch_scalar_type);
auto min_ = min.toDouble();
auto max_ = max.toDouble();
THDoubleTensor_histc(result_, self_, bins, min_, max_);
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_histc", false, DeviceType::CPU, dispatch_scalar_type);
auto min_ = min.toFloat();
auto max_ = max.toFloat();
THFloatTensor_histc(result_, self_, bins, min_, max_);
break;
}
default:
AT_ERROR("_th_histc not supported on CPUType for ", dispatch_scalar_type);
}
return result;
}
std::tuple<Tensor &,Tensor &> _th_gels_out(const Tensor & self, const Tensor & A, Tensor & res1, Tensor & res2) {
TORCH_WARN_ONCE(
"torch.lstsq is deprecated in favor of torch.linalg.lstsq and will be removed in a future PyTorch release.\n",
"torch.linalg.lstsq has reversed arguments and does not return the QR decomposition in "
"the returned tuple (although it returns other information about the problem).\n",
"To get the qr decomposition consider using torch.linalg.qr.\n",
"The returned solution in torch.lstsq stored the residuals of the solution in the ",
"last m - n columns of the returned value whenever m > n. In torch.linalg.lstsq, the ",
"residuals in the field 'residuals' of the returned named tuple.\n",
"The unpacking of the solution, as in\n",
"X, _ = torch.lstsq(B, A).solution[:A.size(1)]\n",
"should be replaced with\n",
"X = torch.linalg.lstsq(A, B).solution"
);
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto res1_ = checked_dense_tensor_unwrap(res1, "res1", 0, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
auto res2_ = checked_dense_tensor_unwrap(res2, "res2", 0, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
auto A_ = checked_dense_tensor_unwrap(A, "A", 2, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
THDoubleTensor_gels(res1_, res2_, self_, A_);
break;
}
case ScalarType::Float: {
auto res1_ = checked_dense_tensor_unwrap(res1, "res1", 0, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
auto res2_ = checked_dense_tensor_unwrap(res2, "res2", 0, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
auto A_ = checked_dense_tensor_unwrap(A, "A", 2, "_th_gels_out", false, DeviceType::CPU, dispatch_scalar_type);
THFloatTensor_gels(res1_, res2_, self_, A_);
break;
}
default:
AT_ERROR("_th_gels_out not supported on CPUType for ", dispatch_scalar_type);
}
return std::tuple<Tensor &, Tensor &>(res1, res2);
}
std::tuple<Tensor,Tensor> _th_gels(const Tensor & self, const Tensor & A) {
TORCH_WARN_ONCE(
"torch.lstsq is deprecated in favor of torch.linalg.lstsq and will be removed in a future PyTorch release.\n",
"torch.linalg.lstsq has reversed arguments and does not return the QR decomposition in "
"the returned tuple (although it returns other information about the problem).\n",
"To get the qr decomposition consider using torch.linalg.qr.\n",
"The returned solution in torch.lstsq stored the residuals of the solution in the ",
"last m - n columns of the returned value whenever m > n. In torch.linalg.lstsq, the ",
"residuals in the field 'residuals' of the returned named tuple.\n",
"The unpacking of the solution, as in\n",
"X, _ = torch.lstsq(B, A).solution[:A.size(1)]\n",
"should be replaced with\n",
"X = torch.linalg.lstsq(A, B).solution"
);
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
auto res1_ = c10::make_intrusive<TensorImpl, UndefinedTensorImpl>(c10::Storage(c10::Storage::use_byte_size_t(), 0, allocator(), true),DispatchKey::CPU, scalarTypeToTypeMeta(dispatch_scalar_type)).release();
auto res1 = Tensor(c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl>::reclaim(res1_));
auto res2_ = c10::make_intrusive<TensorImpl, UndefinedTensorImpl>(c10::Storage(c10::Storage::use_byte_size_t(), 0, allocator(), true),DispatchKey::CPU, scalarTypeToTypeMeta(dispatch_scalar_type)).release();
auto res2 = Tensor(c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl>::reclaim(res2_));
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_gels", false, DeviceType::CPU, dispatch_scalar_type);
auto A_ = checked_dense_tensor_unwrap(A, "A", 2, "_th_gels", false, DeviceType::CPU, dispatch_scalar_type);
THDoubleTensor_gels(res1_, res2_, self_, A_);
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_gels", false, DeviceType::CPU, dispatch_scalar_type);
auto A_ = checked_dense_tensor_unwrap(A, "A", 2, "_th_gels", false, DeviceType::CPU, dispatch_scalar_type);
THFloatTensor_gels(res1_, res2_, self_, A_);
break;
}
default:
AT_ERROR("_th_gels not supported on CPUType for ", dispatch_scalar_type);
}
return std::tuple<Tensor, Tensor>(res1, res2);
}
} // namespace th
} // namespace legacy
} // namespace native
} // namespace at