-
Notifications
You must be signed in to change notification settings - Fork 34
/
siamrpn.py
287 lines (233 loc) · 10 KB
/
siamrpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from __future__ import absolute_import, division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
from collections import namedtuple
from got10k.trackers import Tracker
class SiamRPN(nn.Module):
def __init__(self, anchor_num=5):
super(SiamRPN, self).__init__()
self.anchor_num = anchor_num
self.feature = nn.Sequential(
# conv1
nn.Conv2d(3, 192, 11, 2),
nn.BatchNorm2d(192),
nn.ReLU(inplace=True),
nn.MaxPool2d(3, 2),
# conv2
nn.Conv2d(192, 512, 5, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.MaxPool2d(3, 2),
# conv3
nn.Conv2d(512, 768, 3, 1),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
# conv4
nn.Conv2d(768, 768, 3, 1),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
# conv5
nn.Conv2d(768, 512, 3, 1),
nn.BatchNorm2d(512))
self.conv_reg_z = nn.Conv2d(512, 512 * 4 * anchor_num, 3, 1)
self.conv_reg_x = nn.Conv2d(512, 512, 3)
self.conv_cls_z = nn.Conv2d(512, 512 * 2 * anchor_num, 3, 1)
self.conv_cls_x = nn.Conv2d(512, 512, 3)
self.adjust_reg = nn.Conv2d(4 * anchor_num, 4 * anchor_num, 1)
def forward(self, z, x):
return self.inference(x, **self.learn(z))
def learn(self, z):
z = self.feature(z)
kernel_reg = self.conv_reg_z(z)
kernel_cls = self.conv_cls_z(z)
k = kernel_reg.size()[-1]
kernel_reg = kernel_reg.view(4 * self.anchor_num, 512, k, k)
kernel_cls = kernel_cls.view(2 * self.anchor_num, 512, k, k)
return kernel_reg, kernel_cls
def inference(self, x, kernel_reg, kernel_cls):
x = self.feature(x)
x_reg = self.conv_reg_x(x)
x_cls = self.conv_cls_x(x)
out_reg = self.adjust_reg(F.conv2d(x_reg, kernel_reg))
out_cls = F.conv2d(x_cls, kernel_cls)
return out_reg, out_cls
class TrackerSiamRPN(Tracker):
def __init__(self, net_path=None, **kargs):
super(TrackerSiamRPN, self).__init__(
name='SiamRPN', is_deterministic=True)
self.parse_args(**kargs)
# setup GPU device if available
self.cuda = torch.cuda.is_available()
self.device = torch.device('cuda:0' if self.cuda else 'cpu')
# setup model
self.net = SiamRPN()
if net_path is not None:
self.net.load_state_dict(torch.load(
net_path, map_location=lambda storage, loc: storage))
self.net = self.net.to(self.device)
def parse_args(self, **kargs):
self.cfg = {
'exemplar_sz': 127,
'instance_sz': 271,
'total_stride': 8,
'context': 0.5,
'ratios': [0.33, 0.5, 1, 2, 3],
'scales': [8,],
'penalty_k': 0.055,
'window_influence': 0.42,
'lr': 0.295}
for key, val in kargs.items():
self.cfg.update({key: val})
self.cfg = namedtuple('GenericDict', self.cfg.keys())(**self.cfg)
def init(self, image, box):
image = np.asarray(image)
# convert box to 0-indexed and center based [y, x, h, w]
box = np.array([
box[1] - 1 + (box[3] - 1) / 2,
box[0] - 1 + (box[2] - 1) / 2,
box[3], box[2]], dtype=np.float32)
self.center, self.target_sz = box[:2], box[2:]
# for small target, use larger search region
if np.prod(self.target_sz) / np.prod(image.shape[:2]) < 0.004:
self.cfg = self.cfg._replace(instance_sz=287)
# generate anchors
self.response_sz = (self.cfg.instance_sz - \
self.cfg.exemplar_sz) // self.cfg.total_stride + 1
self.anchors = self._create_anchors(self.response_sz)
# create hanning window
self.hann_window = np.outer(
np.hanning(self.response_sz),
np.hanning(self.response_sz))
self.hann_window = np.tile(
self.hann_window.flatten(),
len(self.cfg.ratios) * len(self.cfg.scales))
# exemplar and search sizes
context = self.cfg.context * np.sum(self.target_sz)
self.z_sz = np.sqrt(np.prod(self.target_sz + context))
self.x_sz = self.z_sz * \
self.cfg.instance_sz / self.cfg.exemplar_sz
# exemplar image
self.avg_color = np.mean(image, axis=(0, 1))
exemplar_image = self._crop_and_resize(
image, self.center, self.z_sz,
self.cfg.exemplar_sz, self.avg_color)
# classification and regression kernels
exemplar_image = torch.from_numpy(exemplar_image).to(
self.device).permute([2, 0, 1]).unsqueeze(0).float()
with torch.set_grad_enabled(False):
self.net.eval()
self.kernel_reg, self.kernel_cls = self.net.learn(exemplar_image)
def update(self, image):
image = np.asarray(image)
# search image
instance_image = self._crop_and_resize(
image, self.center, self.x_sz,
self.cfg.instance_sz, self.avg_color)
# classification and regression outputs
instance_image = torch.from_numpy(instance_image).to(
self.device).permute(2, 0, 1).unsqueeze(0).float()
with torch.set_grad_enabled(False):
self.net.eval()
out_reg, out_cls = self.net.inference(
instance_image, self.kernel_reg, self.kernel_cls)
# offsets
offsets = out_reg.permute(
1, 2, 3, 0).contiguous().view(4, -1).cpu().numpy()
offsets[0] = offsets[0] * self.anchors[:, 2] + self.anchors[:, 0]
offsets[1] = offsets[1] * self.anchors[:, 3] + self.anchors[:, 1]
offsets[2] = np.exp(offsets[2]) * self.anchors[:, 2]
offsets[3] = np.exp(offsets[3]) * self.anchors[:, 3]
# scale and ratio penalty
penalty = self._create_penalty(self.target_sz, offsets)
# response
response = F.softmax(out_cls.permute(
1, 2, 3, 0).contiguous().view(2, -1), dim=0).data[1].cpu().numpy()
response = response * penalty
response = (1 - self.cfg.window_influence) * response + \
self.cfg.window_influence * self.hann_window
# peak location
best_id = np.argmax(response)
offset = offsets[:, best_id] * self.z_sz / self.cfg.exemplar_sz
# update center
self.center += offset[:2][::-1]
self.center = np.clip(self.center, 0, image.shape[:2])
# update scale
lr = response[best_id] * self.cfg.lr
self.target_sz = (1 - lr) * self.target_sz + lr * offset[2:][::-1]
self.target_sz = np.clip(self.target_sz, 10, image.shape[:2])
# update exemplar and instance sizes
context = self.cfg.context * np.sum(self.target_sz)
self.z_sz = np.sqrt(np.prod(self.target_sz + context))
self.x_sz = self.z_sz * \
self.cfg.instance_sz / self.cfg.exemplar_sz
# return 1-indexed and left-top based bounding box
box = np.array([
self.center[1] + 1 - (self.target_sz[1] - 1) / 2,
self.center[0] + 1 - (self.target_sz[0] - 1) / 2,
self.target_sz[1], self.target_sz[0]])
return box
def _create_anchors(self, response_sz):
anchor_num = len(self.cfg.ratios) * len(self.cfg.scales)
anchors = np.zeros((anchor_num, 4), dtype=np.float32)
size = self.cfg.total_stride * self.cfg.total_stride
ind = 0
for ratio in self.cfg.ratios:
w = int(np.sqrt(size / ratio))
h = int(w * ratio)
for scale in self.cfg.scales:
anchors[ind, 0] = 0
anchors[ind, 1] = 0
anchors[ind, 2] = w * scale
anchors[ind, 3] = h * scale
ind += 1
anchors = np.tile(
anchors, response_sz * response_sz).reshape((-1, 4))
begin = -(response_sz // 2) * self.cfg.total_stride
xs, ys = np.meshgrid(
begin + self.cfg.total_stride * np.arange(response_sz),
begin + self.cfg.total_stride * np.arange(response_sz))
xs = np.tile(xs.flatten(), (anchor_num, 1)).flatten()
ys = np.tile(ys.flatten(), (anchor_num, 1)).flatten()
anchors[:, 0] = xs.astype(np.float32)
anchors[:, 1] = ys.astype(np.float32)
return anchors
def _create_penalty(self, target_sz, offsets):
def padded_size(w, h):
context = self.cfg.context * (w + h)
return np.sqrt((w + context) * (h + context))
def larger_ratio(r):
return np.maximum(r, 1 / r)
src_sz = padded_size(
*(target_sz * self.cfg.exemplar_sz / self.z_sz))
dst_sz = padded_size(offsets[2], offsets[3])
change_sz = larger_ratio(dst_sz / src_sz)
src_ratio = target_sz[1] / target_sz[0]
dst_ratio = offsets[2] / offsets[3]
change_ratio = larger_ratio(dst_ratio / src_ratio)
penalty = np.exp(-(change_ratio * change_sz - 1) * \
self.cfg.penalty_k)
return penalty
def _crop_and_resize(self, image, center, size, out_size, pad_color):
# convert box to corners (0-indexed)
size = round(size)
corners = np.concatenate((
np.round(center - (size - 1) / 2),
np.round(center - (size - 1) / 2) + size))
corners = np.round(corners).astype(int)
# pad image if necessary
pads = np.concatenate((
-corners[:2], corners[2:] - image.shape[:2]))
npad = max(0, int(pads.max()))
if npad > 0:
image = cv2.copyMakeBorder(
image, npad, npad, npad, npad,
cv2.BORDER_CONSTANT, value=pad_color)
# crop image patch
corners = (corners + npad).astype(int)
patch = image[corners[0]:corners[2], corners[1]:corners[3]]
# resize to out_size
patch = cv2.resize(patch, (out_size, out_size))
return patch