-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathwireframe.py
executable file
·823 lines (655 loc) · 27.9 KB
/
wireframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
import itertools
import json
import os
import random
import sys
from os.path import isdir, isfile, join, basename
from os import listdir
import time
from math import cos, pi, sin, tan
from joblib import Parallel, delayed
import pickle
import scipy.io as sio
from scipy.optimize import linear_sum_assignment
import numpy as np
from libs import *
from pathlib import Path
from tqdm import tqdm
divide_eps = 1e-20
img_dir = Path('data/v1.1/test/')
result_dir = Path('result')
def check_dir(dir_name):
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def imwrite(imgname, img):
# in case imgname is a Path obj.
cv2.imwrite(str(imgname), img)
def imread(imgname, mode=1):
return cv2.imread(str(imgname), mode)
class RayError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return self.value
class CoordError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return self.value
class Wireframe():
def __init__(self, exp, imgname, junc_epoch=16, line_thresh=50, junc_thresh=0.1, use_mp=False, debug=False):
self.use_mp = use_mp
self.debug = debug
self.line_threshold = line_thresh
self.dataset_ = 'test'
self.junc_epoch = str(junc_epoch)
self.line_epoch = str(100)
self.exp = exp
self.junc_thresh = junc_thresh
self.theta_thresh = 0.5
self.junc_dir = result_dir / 'junc' / self.exp / self.junc_epoch
self.line_dir = result_dir / 'linepx' / '0'
self.wireframe_dir = result_dir / 'wireframe_{}_{}/{}'.format(self.junc_thresh, self.theta_thresh, self.line_threshold)
#check_dir(self.wireframe_dir)
self.line_map_size = 320
self.img_dir = img_dir
self.imgname = imgname
# self.theta_dist_thresh = 1.6
# self.theta_dist_relax = 4.5
# self.dist_to_junction = 130
self.theta_dist_thresh = 1.3
self.theta_dist_relax = 4.0
self.dist_to_junction = 130
self.display = True if self.debug else False
def load_img(self, in_=None):
imgname = in_ if in_ is not None else self.imgname
imgpath = self.img_dir / imgname
img = imread(imgpath)
self.h, self.w = img.shape[:2]
self.max_side_length = max(self.h, self.w)
self.img = img
if self.debug:
print(self.h, self.w, self.img.shape)
def load_line(self, in_=None):
imgname = in_ if in_ is not None else self.imgname
line_name = self.line_dir / "{}_line.npy".format(imgname[:-4])
lineMap = np.load(line_name)
if self.debug:
print(lineMap.max())
lineMap = cv2.resize(lineMap, (self.w, self.h), cv2.INTER_NEAREST)
self.lineMap = cv2.threshold(lineMap, self.line_threshold, 255, cv2.THRESH_BINARY)[1]
if self.debug:
print(self.lineMap.max(), self.lineMap.shape)
def load_junc(self, in_=None, theta_thresh=None, suffix='.pkl'):
imgname = in_ if in_ is not None else self.imgname
junc_thresh = int(self.junc_thresh * 10)
junc_path = self.junc_dir / str(junc_thresh)
pklfile = join(junc_path, imgname[:-4] + '_5.pkl')
with open(pklfile, 'rb') as fn:
try:
d = pickle.load(fn)
except TypeError:
d = pickle.load(fn, encoding='latin1')
h, w, thetas, junctions = d['h'], d['w'], d['thetas'], d['junctions']
tmp_thetas = thetas
njunctions, nthetas = [], []
for junct, th in zip(junctions, tmp_thetas):
x, y = junct
nx, ny = int(x), int(y)
if nx < 0 or nx > w or ny < 0 or ny > h:
continue
# raise CoordError("{}, {} exceed [0, {}], [0, {}]".format(nx, ny, w, h))
if len(th) >= 2:
njunctions.append((nx, ny))
nthetas.append(th)
self.pred_junctions = njunctions
self.pred_thetas = nthetas
if self.debug:
print(len(njunctions), len(nthetas))
def get_wireframe(self, gt=None):
"""
Generating wireframes/lines from predicted junctions and line pixels.
This func operates for a single image.
"""
# theta_thresh = self.theta_thresh
thetas = self.pred_thetas # [thresholding(ths, ths_confs, theta_thresh)[0] for ths, ths_confs in zip(self.pred_thetas, self.pred_confs)]
junctions, nthetas = mergeDupJunctions(self.pred_junctions, thetas)
#nthetas = mergeDupTheta(nthetas)
img = self.img
h, w = self.h, self.w
junctions = np.array(junctions, dtype=np.float32)
numJunc = junctions.shape[0]
if self.display:
showIm(name='linemap', img=self.lineMap)
showJunctionPrediction(img, junctions, nthetas, imgname='junction map', display_=True)
rays, rays_theta = possible_lines((h, w), junctions, nthetas, img=img, DEBUG=False)
# calculate d_min of junction and line_2
ray_all = []
ray_theta_all = []
ray_map_junction = []
junction_map_ray = [[] for _ in junctions]
for idx, p in enumerate(junctions):
rays_p = [(x, y, p[0], p[1]) for x, y, _, _ in rays[idx]]
for l, t in zip(rays_p, rays_theta[idx]):
ray_all.append(l)
ray_theta_all.append(t)
ray_map_junction.append(idx)
junction_map_ray[idx].append(len(ray_all) - 1)
ray_all = np.array(ray_all, dtype=np.float32)
## calculate several metrics:
## 1. the projection of junction on ray.
## 2. the distance of junction to ray.
## 3. the angle of angle with respect to the ends of ray.
pointJuncOnRay, distJuncToRay, juncOnRay, juncRayTheta = calc_dist_theta(junctions, ray_all)
numRay = ray_all.shape[0]
T = np.zeros((numRay, numJunc))
T -= 1
within_T = np.zeros(T.shape).astype(np.float32)
within_T -= 1.
for i in range(numRay):
point_idx = ray_map_junction[i]
for j in range(numJunc):
if point_idx == j:
continue
on_line = juncOnRay[j, i, 2]
delta_t = juncRayTheta[j, i]
dist = distJuncToRay[j, i, 0]
dist_to_junction = distJuncToRay[j, i, 3]
if delta_t < self.theta_dist_thresh or (dist <= self.theta_dist_relax and dist_to_junction < self.dist_to_junction):
T[i, j] = delta_t
if on_line:
within_T[i, j] = delta_t
mutual_T = -np.ones(T.shape)
back_T = -np.ones(T.shape)
for i in range(numRay):
mapped_point_idx = ray_map_junction[i]
indexes = np.nonzero(within_T[i,:] > -1 )[0]
if len(indexes) == 0:
continue
for idx in indexes:
if idx == mapped_point_idx:
continue
subset_indexes = junction_map_ray[idx]
#np.nonzero(lines_map_matrix == idx)[0]
for si in subset_indexes:
if within_T[si, mapped_point_idx] > -1:
mutual_T[i, idx] = si
break
elif T[si, mapped_point_idx] > -1:
back_T[i, idx] = si
### line split 1
mutual_T = mutual_T.astype(np.int32)
im = img
split_1 = []
line2Line = np.zeros((numRay, numRay)).astype(np.int32)
for i in range(numRay):
k = ray_map_junction[i]
point_indexes = np.nonzero(mutual_T[i, :]>-1)[0]
x1, y1, x2, y2 = ray_all[i].tolist()
if len(point_indexes) > 0:
lengths = [(k, distJuncToRay[k, i, 3]) for k in point_indexes]
lengths.sort(key=lambda x:x[1])
endpoint_idx = lengths[0][0]
line_idx = mutual_T[i, endpoint_idx]
line2Line[i, line_idx] = 1
line2Line[line_idx, i] = 1
lineDistMatrix = pointDistMatrix(junctions[ray_map_junction, :], junctions[ray_map_junction, :])
for i in range(numRay):
nonzero_indexes = np.nonzero(line2Line[i, :] > 0)[0]
if len(nonzero_indexes) > 1:
dists = lineDistMatrix[i, nonzero_indexes]
smallest_indexes = dists.argmin()
for k, n_idx in enumerate(nonzero_indexes):
if k != smallest_indexes:
line2Line[i, n_idx] = 0
line2Line[n_idx, i] = 0
for i in range(numRay):
nonzero_indexes = np.nonzero(line2Line[i, :]>0)[0]
assert len(nonzero_indexes) <= 1, len(nonzero_indexes)
if len(nonzero_indexes) == 1:
ni = nonzero_indexes[0]
x1, y1, x2, y2 = (ray_all[ni, 2], ray_all[ni, 3], ray_all[i, 2], ray_all[i, 3])
length_= sqrt((x1 - x2)**2 + (y1 - y2)**2)
adding_line = False
if length_ < self.max_side_length / 2.0:
adding_line = True
else:
#coords = linespace((x1, y1), (x2, y2), img.shape[:2])
ratio, max_loc, _ = pixelRatio((x1, y1), (x2, y2), self.lineMap)
if ratio > 0.6:
adding_line = True
if adding_line:
im = addLines(im, [(x1, y1, x2, y2)], display_=self.display, imgname="{} split 1".format(self.imgname), rand_color=False, color=(0, 255, 0), thickness=2)
split_1.append((ray_all[ni, 2], ray_all[ni, 3], ray_all[i, 2], ray_all[i, 3]))
### line split 2
### origin t22_4
## for all the cuts, only take the first
split_2 = []
for i in range(numRay):
bi_point_indexes = np.nonzero(mutual_T[i, :] > -1)[0]
online_point_indexes = np.nonzero(within_T[i, :] > -1)[0]
bx, by = ray_all[i, 0], ray_all[i, 1]
px, py = ray_all[i, 2], ray_all[i, 3]
k = ray_map_junction[i]
if distance((px, py), (bx, by)) < 0.05 * self.max_side_length:
split_2.append((px, py, bx, by))
im = addLines(im, [(px, py, bx, by)], display_=self.display, imgname="{} split 2".format(self.imgname), rand_color=False, color=(0, 0, 80), thickness=2)
continue
if len(bi_point_indexes) == 0 and len(online_point_indexes) == 0:
ratio, max_loc, _ = pixelRatio((px, py), (bx, by), self.lineMap)
if ratio < 0.05:
continue
bx, by = max_loc
intersects = intersections(np.array([px, py, bx, by], dtype=np.float32), np.array(split_1, dtype=np.float32))
start_list =[(px, py)]
end_list = []
for int_ in intersects:
start_list.append(int_)
end_list.append(int_)
end_list.append((bx, by))
next_start = None
previous_end = None
first_flag = True
for idx, (start, end) in enumerate(zip(start_list, end_list)):
if not first_flag:
break
if next_start is None:
next_start = start
line_ratio, max_pos_idx, max_pos_loc = pixelRatio(start, end, self.lineMap)
adding_line = False
valid_cond = line_ratio > 0.6 and max_pos_loc > 0.75
if idx == 0:
if distance(start, end) < self.max_side_length/20. or valid_cond:
adding_line = True
elif valid_cond:
adding_line = True
if adding_line:
previous_end = end
split_2.append((start[0], start[1], end[0], end[1]))
im = addLines(im, [(start[0], start[1], end[0], end[1])], display_=self.display, imgname="{} split 2".format(self.imgname), rand_color=False, color=(0, 0, 80), thickness=2)
else:
if idx == 0:
first_flag = False
next_start = None
previous_end = None
elif len(bi_point_indexes) == 0 and len(online_point_indexes) > 0:
online_point_indexes = online_point_indexes.tolist()
online_point_indexes.sort(key=lambda x:distance(pointJuncOnRay[x, i], (px, py)))
ratio, max_loc, _ = pixelRatio((px, py), (bx, by), self.lineMap)
if ratio < 0.05:
continue
bx, by = max_loc
start_list =[(px, py)]
end_list = []
for on_idx in online_point_indexes:
start_list.append(pointJuncOnRay[on_idx, i])
end_list.append(pointJuncOnRay[on_idx, i])
end_list.append((bx, by))
next_start = None
previous_end = None
for idx, (start, end) in enumerate(zip(start_list, end_list)):
if next_start is None:
next_start = start
line_ratio, max_pos_idx, max_pos_loc = pixelRatio(start, end, self.lineMap)
adding_line = False
valid_cond = line_ratio > 0.6 and max_pos_loc > 0.75
if idx == 0:
if distance(start, end) < self.max_side_length/20. or valid_cond:
adding_line = True
elif valid_cond:
adding_line = True
if adding_line:
previous_end = end
split_2.append((start[0], start[1], end[0], end[1]))
im = addLines(im, [(start[0], start[1], end[0], end[1])], display_=self.display, imgname='{} split 2'.format(self.imgname), rand_color=False, color=(0, 0, 80), thickness=2)
else:
next_start = None
previous_end = None
if len(split_1) == 0:
print('{} no line from junction'.format(self.imgname))
self.lines = split_1 + split_2
def showLines(self):
# save lines
np_lines = np.array(self.lines)
sio.savemat(self.wireframe_dir / (self.imgname[:-4] + '.mat'), {'lines':np_lines})
# save visualization
img = np.copy(self.img)
im = addLines(img, self.lines, display_=False, color=(0, 255, 0), thickness=2)
imwrite(self.wireframe_dir / self.imgname, im)
def calcAssignment(th1, th2, dist =7.5):
H, W = len(th1), len(th2)
costMatrix = np.zeros((H, W))
m1 = np.array(th1, dtype=np.float32)
m2 = np.array(th2, dtype=np.float32)
m1 = np.reshape(m1, (H, 1))
m2 = np.reshape(m2, (1, W))
costMatrix = np.abs(m1- m2)
costMatrix = np.minimum(costMatrix, 360 - costMatrix)
costMatrix[costMatrix > dist] = 1000.
ass_i, ass_j = linear_sum_assignment(costMatrix)
good, bad = [], []
residual = 0.
for i, j in zip(ass_i, ass_j):
if costMatrix[i, j] <= dist:
good.append((i, j))
residual += costMatrix[i, j]
elif costMatrix[i, j] == 1000.:
bad.append((i, j))
return good, bad, residual
def thresholding(ths, confs, thresh):
nths, nconfs = [], []
for t, c in zip(ths, confs):
if c > thresh:
nths.append(t)
nconfs.append(c)
if len(nths) == 0:
return [], []
zipped_list = list(zip(nths, nconfs))
zipped_list.sort(key=lambda x: x[1])
nths, nconfs = list(zip(*zipped_list))
return nths, nconfs
######################################################
# Among all predicted junctions, merge the ones which
# are too close or have similar branches.
######################################################
def mergeDupJunctions(junctions, thetas):
N = len(junctions)
njunctions = []
nthetas = []
for i in range(N):
if i == 0:
njunctions.append(list(junctions[0]))
nthetas.append(list(thetas[0]))
continue
dup_flag = False
dup_idx = None
match_list = []
for j in range(len(njunctions)):
dist_ij = distance(junctions[i], njunctions[j])
if dist_ij <= 6:
dup_flag = True
dup_idx = j
good, bad, _ = calcAssignment(thetas[i], nthetas[j])
if len(good) >= 1:
match_list.append((j, good))
else:
match_list =[(j, [])]
break
elif dist_ij <= 10:
good, bad, _ = calcAssignment(thetas[i], nthetas[j])
if len(good) >= 1:
match_list.append((j, good))
else:
continue
if match_list:
match_list.sort(key=lambda x:len(x[1]))
if dup_flag or len(match_list) > 0:
matched_idx = []
if not dup_flag:
dup_idx, matched_idx = match_list[-1]
else:
dup_idx, matched_idx = match_list[0]
new_thetas = []
x1, y1 = junctions[i]
x2, y2 = njunctions[dup_idx]
x, y = (x1 + x2)/2., (y1 + y2)/2.
njunctions[dup_idx] = (x, y)
# merge junctions[i] with njucntions[idx], if a branch is matched, then not add to the new junction.
dup_indexes_theta = [k1 for k1, _ in matched_idx]
dup_indexes_ntheta = [k2 for _, k2 in matched_idx]
for t1, t2 in matched_idx:
new_thetas.append( (thetas[i][t1] + nthetas[dup_idx][t2])/2. )
for idx_1, t in enumerate(thetas[i]):
if idx_1 not in dup_indexes_theta:
new_thetas.append(t)
for idx_2, t in enumerate(nthetas[dup_idx]):
if idx_2 not in dup_indexes_ntheta:
new_thetas.append(t)
nthetas[dup_idx] = new_thetas
else:
njunctions.append(junctions[i])
nthetas.append(list(thetas[i]))
return njunctions, nthetas
def mergeDupTheta(thetas, theta_thresh=4.):
new_thetas = [[] for _ in thetas]
for idx, ths in enumerate(thetas):
num = len(ths)
new_ths = []
ths.sort()
for i, t in enumerate(ths):
dup_flag = False
dup_idx = None
for j, new_t in enumerate(new_ths):
if theta_dist(t, new_t) < theta_thresh:
dup_flag = True
dup_idx = j
break
if not dup_flag:
new_ths.append(ths[i])
else:
new_ths[dup_idx] = 0.5 * new_ths[dup_idx] + 0.5 * t
new_thetas[idx] = new_ths
return new_thetas
def theta_dist(th1, th2):
d1 = min(th1, th2)
d2 = max(th1, th2)
return min(d2 - d1, d1 + 360 - d2)
def innerProduct(A, B, axis=-1):
return np.sum(np.multiply(A, B), axis=axis)
def calc_dist_theta(points, lines, geometric_ = False):
lines = lines.astype(np.float32)
p1 = lines[np.newaxis, :, :2]
p2 = lines[np.newaxis, :, 2:4]
p = points[:, np.newaxis, :].astype(np.float32)
# the intersection is px, py
p1p = p - p1
p2p = p - p2
p1p2 = p2 - p1
p1pm = innerProduct(p1p, p1p2) / (np.sum(np.square(p1p2), axis=-1) + eps)
p1pm = np.expand_dims(p1pm, axis=-1) * p1p2
pm = p1 + p1pm
p2pm = -p1p2 + p1pm
p1p2_l = np.sqrt(np.sum(np.square(p1p2), axis=-1))
p1pm_s = innerProduct(p1pm, p1p2)/(p1p2_l + eps)
p2pm_s = innerProduct(p2pm, -p1p2)/(p1p2_l + eps)
ppm_l = np.linalg.norm(p - pm, axis=-1)
on_line_1 = p1pm_s >= 0
on_line_2 = p2pm_s >= 0
on_line = np.logical_and(on_line_1, on_line_2)
pp1_l = np.linalg.norm(p - p1, axis=-1)
pp2_l = np.linalg.norm(p - p2, axis=-1)
dist_endpoint = np.minimum(pp1_l, pp2_l)
short_dist = ppm_l if geometric_ else np.where(on_line, ppm_l, dist_endpoint)
dist = np.stack([short_dist, ppm_l, p1pm_s, p2pm_s], axis=-1)
theta_p1 = innerProduct(p1p, p1p2)/(p1p2_l * pp1_l + eps)
theta_p2 = innerProduct(p2p, -p1p2)/(p1p2_l * pp2_l + eps)
theta_p1 = np.arccos(np.clip(theta_p1, -1., 1.)) * 180. / pi
theta_p2 = np.arccos(np.clip(theta_p2, -1., 1.)) * 180. / pi
theta_p1 = np.minimum(theta_p1, 180. - theta_p1)
theta_p2 = np.minimum(theta_p2, 180. - theta_p2)
theta_p = np.minimum(theta_p1, theta_p2)
on_line = np.stack([on_line_1, on_line_2, on_line], axis=-1)
return pm, dist, on_line, theta_p
def possible_lines(img_size, points, thetas, img=None, DEBUG=False):
(h, w) = img_size
assert len(points) == len(thetas), "number of points is not euqal to len(thetas) {} vs {}".format(len(points), len(thetas))
possible_lines = [[] for _ in points]
possible_lines_theta = [[] for _ in points]
for idx, (x, y) in enumerate(points):
ths = thetas[idx]
line_to_show = []
for t in ths:
if 89.8 < t < 90.2:
line_se = (x, h, x, 0)
elif 269.8 <t < 270.2:
line_se = (x, 0, x, h)
elif 0 <= t <= 0.2 or 359.8<= t<=360:
line_se = (w, y, 0, y)
elif 179.8 <= t <= 180.2:
line_se = (0, y, w, y)
else:
tr = t * pi / 180.
# line: y = (x - x0) * tan(\theta) + y0
# 1. x = 0., w, y should belong to
y_0 = - x * tan(tr) + y
y_w = (w - x) * tan(tr) + y
x_0 = (0 - y) / tan(tr) + x
x_h = (h - y) / tan(tr) + x
points_to_select = []
if 0 <= y_0 <= h:
points_to_select.append((0, y_0))
if 0 <= y_w <= h:
points_to_select.append((w, y_w))
if 0 <= x_0 <= w:
points_to_select.append((x_0, 0))
if 0 <= x_h <= w:
points_to_select.append((x_h, h))
assert len(points_to_select) == 2, "only 2 points can be valid."
p1, p2 = points_to_select
c, s = cos(tr), sin(tr)
ip1 = (p1[0] - x) * c + (p1[1] - y) * s
ip2 = (p2[0] - x) * c + (p2[1] - y) * s
if ip1 > 0:
line_se = (p1[0], p1[1], p2[0], p2[1])
elif ip2 > 0:
line_se = (p2[0], p2[1], p1[0], p1[1])
elif ip1 < 0:
line_se = (p2[0], p2[1], p1[0], p1[1])
elif ip2 < 0:
line_se = (p1[0], p1[1], p2[0], p2[1])
else:
raise RayError('no intersection found of ray')
possible_lines[idx].append(line_se)
possible_lines_theta[idx].append(t * pi/ 180.)
line_to_show.append((x, y, line_se[0], line_se[1]))
# im = addLines(im, line_to_show, display_ = True if DEBUG else False, color=(0, 255, 0), thickness=2)
return possible_lines, possible_lines_theta
def deltaTheta(ep, sp, pt):
if not isinstance(pt, np.ndarray):
pt = np.array(pt, dtype=np.float32)
dir_v = np.stack([np.cos(pt), np.sin(pt)], axis=-1)
ep = ep[:, np.newaxis, :]
sp = sp[np.newaxis, :, :]
v = ep - sp
dir_v = dir_v[np.newaxis, :, :]
se = np.linalg.norm(v, axis=-1, keepdims=False)
cosThetas = innerProduct(v, dir_v) / (se + eps)
cosThetas = np.clip(cosThetas, -1, 1)
angles = np.arccos(cosThetas)
angles = angles * 180./ pi
return angles
def pointDistMatrix(pts1, pts2):
v = pts1[:, np.newaxis, :] - pts2[np.newaxis, :, :]
dist = np.linalg.norm(v, axis=2)
return dist
def intersections(line, lines_all):
p = line[:2]
intersects = []
for la in lines_all:
intersect = intersectionOfTwoLines(line, la)
if intersect is None :
continue
ip1 = np.inner(line[:2] - intersect, line[2:] - intersect)
ip2 = np.inner(la[:2] - intersect, la[2:] - intersect)
if ip1 >= 0 or ip2 >= 0:
continue
intersects.append(intersect)
intersects.sort(key=lambda x:((x[0] - p[0])**2 + (x[1] - p[1])**2))
nodup = []
for i, it_ in enumerate(intersects):
dup_flag = False
dup_idx = None
for j, nd_ in enumerate(nodup):
if distance(it_, nd_) < 3.:
dup_flag = True
dup_idx = j
break
if not dup_flag:
nodup.append(it_)
return nodup
def pixelRatio(p1, p2, M):
coords = linespace(p1, p2, M.shape)
map_value = M[coords]
#print("\n map_value: ", map_value, "\n"
ratio, max_idx_loc, max_idx = ratioSeq(map_value)
max_idx = int(max_idx)
if len(coords[0]) == 0:
return 0, p1
locx = coords[1][max_idx]
locy = coords[0][max_idx]
return ratio, (locx, locy), max_idx_loc
def ratioSeq(seq):
num = len(seq)
nz_indexes = np.nonzero(seq)[0]
if len(nz_indexes) == 0:
return 0., 0., 0.
max_idx = nz_indexes.max()
return float(len(nz_indexes)) / float(max_idx + 1), float(max_idx + 1)/ float(num), max_idx
def linespace(p1, p2, shape):
x1, y1 = p1
x2, y2 = p2
h, w = shape
x1, y1 = int(x1), int(y1)
x2, y2 = int(x2), int(y2)
x1 = min(max(x1, 0), w - 1)
x2 = min(max(x2, 0), w - 1)
y1 = min(max(y1, 0), h - 1)
y2 = min(max(y2, 0), h - 1)
num_x = max(x1, x2) - min(x1, x2) + 1
num_y = max(y1, y2) - min(y1, y2) + 1
if num_x < num_y:
xlist = np.linspace(x1, x2, num=num_y)
ylist = np.linspace(y1, y2, num=num_y)
else:
xlist = np.linspace(x1, x2, num=num_x)
ylist = np.linspace(y1, y2, num=num_x)
xlist = xlist.astype(np.int32)
ylist = ylist.astype(np.int32)
ylist[ylist > (h -1)] = h -1
xlist[xlist > (w - 1)] = w - 1
coords = np.vstack((ylist, xlist))
return tuple(coords)
def angleBetweenLines(l1, l2):
x = l1[:2] - l1[2:4]
y = l2[:2] - l2[2:4]
theta = np.arccos( np.clip(innerProduct(x, y)/(np.linalg.norm(x) * np.linalg.norm(y) + eps), -1., 1.)) * 180./ pi
return np.minimum(theta, 180. - theta)
def angleBetweenLinesMatrix(L1, L2):
M, N = L1.shape[0], L2.shape[0]
x = L1[:, :2] - L1[:, 2:4]
y = L2[:, :2] - L2[:, 2:4]
x = x[:, np.newaxis, :]
y = y[np.newaxis, :, :]
theta = np.arccos( np.clip(innerProduct(x, y)/(np.linalg.norm(x, axis=-1) * np.linalg.norm(y, axis=-1) + eps), -1., 1.)) * 180./ pi
return np.minimum(theta, 180. - theta)
def process_wireframe(exp_name, in_, junc_thresh, line_thresh, debug=False):
wf = Wireframe(exp_name, in_, junc_thresh=junc_thresh, line_thresh=line_thresh, debug=debug)
wf.load_img()
wf.load_line()
wf.load_junc(theta_thresh=None)
wf.get_wireframe()
wf.showLines()
def main():
with open(img_dir / '..' / 'test.txt', 'r') as fn:
imgnames = fn.read().splitlines()
print("# test images: {}".format(imgnames.__len__()))
theta_thresh = 0.5
junc_thresh = 0.5
exp_name = '1'
debug = False
use_mp = True if not debug else False
njobs = 30
print("junction threshold, theta threshold: {}, {}".format(junc_thresh, theta_thresh))
line_thresholds = [100] if debug else [2, 6, 10, 20, 30, 50, 80, 100, 150, 200, 250, 255]
for line_thresh in line_thresholds:
wireframe_dir = result_dir / 'wireframe_{}_{}/{}'.format(junc_thresh, theta_thresh, line_thresh)
check_dir(wireframe_dir)
print("== line threshold: {}".format(line_thresh))
if use_mp:
Parallel(n_jobs=njobs)(delayed(process_wireframe)(exp_name, in_, junc_thresh, line_thresh)
for in_ in tqdm(imgnames)) # max_len default to 1.
else:
for in_ in tqdm(imgnames):
process_wireframe(in_, junc_thresh, line_thresh, debug=debug)
if __name__ == '__main__':
main()