-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathlibs.py
executable file
·404 lines (322 loc) · 11.7 KB
/
libs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import numpy as np
all_colors = np.random.random_integers(0, high=255, size=(20, 3)) ## for visualizing the lines
import cv2
from math import cos, sin, pi, sqrt
from scipy.optimize import linear_sum_assignment
import dominate
from dominate.tags import *
import os
from os.path import isdir
eps = 1e-25
same_point_eps = 3.
def addLines(img, lines, imgname='adding_lines', color=(0,0,255), rand_color=False, thickness=1, display_=False):
newim = np.copy(img)
if lines is None or len(lines) == 0:
return newim
for x1, y1, x2, y2 in lines:
l_color = tuple(np.random.random_integers(0, high=255, size=(3))) if rand_color else color
cv2.line(newim, (int(x1), int(y1)), (int(x2), int(y2)), l_color, thickness)
if display_:
showIm(imgname, newim)
return newim
def addPoints(img, points, imgname = 'adding_points', color = (0, 255, 255), thickness = 2, display_ = False):
newim = np.copy(img)
for x,y in points:
cv2.ellipse(newim, (int(x), int(y)), (thickness, thickness),
0, 0, 360, color, -1)
if display_:
showIm(imgname,newim)
return newim
def showJunctionPrediction(img, junctions, thetas,
color = (0, 255, 0),
imgname = 'junction',
display_=False,
thickness=2,
rand_color = False
):
newim = np.copy(img)
for (x, y), theta in zip(junctions, thetas):
assert len(theta) >= 0
if len(theta) < 2:
continue
l_color = tuple(all_colors[len(theta), :]) if rand_color else color
cv2.ellipse(newim, (int(x), int(y)), (2,2), 0, 0, 360, l_color, -1)
for t in theta:
if isinstance(t, tuple):
z = t[0]
else:
z = t
x1, y1 = (x + 12.5 * cos(z * pi / 180.),
y + 12.5 * sin(z * pi / 180.))
cv2.line(newim, (int(x), int(y)),
(int(x1), int(y1)), l_color, thickness)
cv2.line(newim, (int(x), int(y)),
(int(x1), int(y1)), l_color, thickness)
if display_:
showIm(imgname,newim)
return newim
def intersectionOfLines(A, B):
"""
A and B are M and N points. (Mx2 and Nx2)
"""
#print A.shape, B.shape
da = A[:, 2:4] - A[:, :2]
db = B[:, 2:4] - B[:, :2]
dp = A[:, np.newaxis, :2] - B[np.newaxis, :, :2]
dap = np.hstack((-da[:, 1], da[:, 0]))
print(da.shape, db.shape, dp.shape, dap.shape)
if dap.ndim == 1:
dap = dap[np.newaxis, :]
denom = np.sum(np.multiply(dap[:, np.newaxis, :], db[np.newaxis, :, :]), axis=2)
num = np.sum(np.multiply(dap[:, np.newaxis, :], dp), axis=2)
print(denom.shape, num.shape)
#valid = denom !=0
tmp = num / (denom.astype(float) + eps)
intersect = tmp[:, :, np.newaxis]* db[np.newaxis, :, :] + B[np.newaxis, :, :2]
print(intersect.shape)
return intersect
def intersectionOfTwoLines(A, B):
"""
A and B are M and N points. (Mx2 and Nx2)
"""
da = A[2:4] - A[:2]
db = B[2:4] - B[:2]
dp = A[:2] - B[:2]
dap = np.hstack((-da[1], da[0]))
#print da.shape, db.shape, dp.shape, dap.shape
denom = np.sum(np.multiply(dap, db))
num = np.sum(np.multiply(dap, dp))
#print denom.shape, num.shape
if denom == 0:
return None
tmp = num / denom.astype(float)
intersect = tmp * db + B[:2]
return intersect
def angleOfLine(p1, p2):
"""
p1 -> p2
"""
x1, y1 = p1
x2, y2 = p2
dist = sqrt((x1 - x2)**2 + (y1 - y2)**2)
if abs(y1 - y2) <= 0.1:
if x1 > x2:
return 180.
else:
return 0.
elif y1 < y2:
theta = acos((x2 - x1) / dist)
return theta / pi * 180.
else:
theta = acos((x2 - x1) / dist)
return 360. - theta / pi * 180.
def lineScale(p1, p2):
x1, y1 = p1
x2, y2 = p2
return sqrt((x1- x2)**2 + (y1 - y2)**2)
def SamePoint(p1, p2, eps = None):
if eps is None:
eps = same_point_eps
x1, y1 = p1
x2, y2 = p2
dist = sqrt((x1 - x2)**2 + (y1 - y2)**2)
return dist < eps
def EqualPoint(p1, p2):
x1, y1 = p1
x2, y2 = p2
return x1 == x2 and y1 == y2
def distance(p1, p2):
return sqrt( (p1[0]-p2[0])**2 + (p1[1] - p2[1])**2 )
def showIm(name='test', img = None):
if img is None:
return
else:
#print "show img"
#cv2.resizeWindow(name, 1000, 1000)
if img.max() > 10:
img = img.astype(np.uint8)
cv2.imshow(name, img)
key = cv2.waitKey(0)
if key == 'a':
cv2.destroyAllWindows()
if key == 27:
return None
def calcAssignment(th1, th2, dist = 10.):
H = len(th1)
W = len(th2)
costMatrix = np.zeros((H, W))
m1 = np.array(th1, dtype=np.float32)
m2 = np.array(th2, dtype=np.float32)
m1 = np.reshape(m1, (H, 1))
m2 = np.reshape(m2, (1, W))
costMatrix = np.abs(m1- m2)
costMatrix = np.minimum(costMatrix, 360 - costMatrix)
costMatrix[costMatrix > dist] = 1000.
ass_i, ass_j = linear_sum_assignment(costMatrix)
good = []
bad = []
residual = 0.
for i, j in zip(ass_i, ass_j):
if costMatrix[i, j] <= dist:
good.append((i, j))
residual += costMatrix[i, j]
elif costMatrix[i, j] == 1000.:
bad.append((i, j))
def minDist(p, pts):
dists = [distance(p, pt) for pt in pts]
min_dist = min(dists)
min_idx = dists.index(min_dist)
return min_dist, min_idx
def thresholding(ths, confs, thresh):
nths, nconfs = [], []
for t, c in zip(ths, confs):
if c > thresh:
nths.append(t)
nconfs.append(c)
if len(nths) == 0:
return [], []
zipped_list = list(zip(nths, nconfs))
zipped_list.sort(key=lambda x: x[1])
nths, nconfs = list(zip(*zipped_list))
return nths, nconfs
def removeDupJunctions(junctions, thetas):
N = len(junctions)
njunctions = []
nthetas = []
for i in range(N):
if i == 0:
njunctions.append(list(junctions[0]))
nthetas.append(list(thetas[0]))
continue
dup_flag = False
dup_idx = None
match_list = []
for j in range(len(njunctions)):
dist_ij = distance(junctions[i], njunctions[j])
if dist_ij <= 6:
dup_flag = True
dup_idx = j
good, bad, _ = calcAssignment(thetas[i], nthetas[j])
if len(good) >= 1:
match_list.append((j, good))
else:
match_list =[(j, [])]
break
elif dist_ij <= 10:
good, bad, _ = calcAssignment(thetas[i], nthetas[j])
if len(good) >= 1:
match_list.append((j, good))
else:
continue
if match_list:
match_list.sort(key=lambda x:len(x[1]))
if dup_flag or len(match_list) > 0:
matched_idx = []
if not dup_flag:
dup_idx, matched_idx = match_list[-1]
else:
dup_idx, matched_idx = match_list[0]
new_thetas = []
x1, y1 = junctions[i]
x2, y2 = njunctions[dup_idx]
x, y = (x1 + x2)/2., (y1 + y2)/2.
njunctions[dup_idx] = (x, y)
# merge junctions[i] with njucntions[idx], if a branch is matched, then not add to the new junction.
dup_indexes_theta = [k1 for k1, _ in matched_idx]
dup_indexes_ntheta = [k2 for _, k2 in matched_idx]
for t1, t2 in matched_idx:
new_thetas.append( (thetas[i][t1] + nthetas[dup_idx][t2])/2. )
for idx_1, t in enumerate(thetas[i]):
if idx_1 not in dup_indexes_theta:
new_thetas.append(t)
for idx_2, t in enumerate(nthetas[dup_idx]):
if idx_2 not in dup_indexes_ntheta:
new_thetas.append(t)
nthetas[dup_idx] = new_thetas
else:
njunctions.append(junctions[i])
nthetas.append(list(thetas[i]))
return njunctions, nthetas
def removeDupTheta(thetas, theta_thresh=4.):
new_thetas = [[] for _ in thetas]
for idx, ths in enumerate(thetas):
num = len(ths)
new_ths = []
ths.sort()
for i, t in enumerate(ths):
dup_flag = False
dup_idx = None
for j, new_t in enumerate(new_ths):
if theta_dist(t, new_t) < theta_thresh:
dup_flag = True
dup_idx = j
break
if not dup_flag:
new_ths.append(ths[i])
else:
new_ths[dup_idx] = 0.5 * new_ths[dup_idx] + 0.5 * t
new_thetas[idx] = new_ths
return new_thetas
def innerProduct(A, B, axis=-1):
return np.sum( np.multiply(A, B), axis=-1)
def calc_dist_theta(points, lines, geometric_ = False):
lines = lines.astype(np.float32)
p1 = lines[np.newaxis, :, :2]
p2 = lines[np.newaxis, :, 2:4]
p = points[:, np.newaxis, :].astype(np.float32)
# the intersection is px, py
p1p = p - p1
p2p = p - p2
p1p2 = p2 - p1
#print p1p.shape, p1p2.shape
p1pm = innerProduct(p1p, p1p2) / (np.sum(np.square(p1p2), axis=-1) + eps)
p1pm = np.expand_dims(p1pm, axis=-1)* p1p2
pm = p1 + p1pm
p2pm = -p1p2 + p1pm
p1p2_l = np.sqrt(np.sum(np.square(p1p2), axis=-1))
p1pm_s = innerProduct(p1pm, p1p2)/(p1p2_l + eps)
p2pm_s = innerProduct(p2pm, -p1p2)/(p1p2_l + eps)
ppm_l = np.linalg.norm(p - pm, axis=-1)
on_line_1 = p1pm_s >= 0
on_line_2 = p2pm_s >= 0
on_line = np.logical_and(on_line_1, on_line_2)
pp1_l = np.linalg.norm(p - p1, axis=-1)
pp2_l = np.linalg.norm(p - p2, axis=-1)
dist_endpoint = np.minimum(pp1_l, pp2_l)
short_dist = ppm_l if geometric_ else np.where(on_line, ppm_l, dist_endpoint)
dist = np.stack([short_dist, ppm_l, p1pm_s, p2pm_s], axis=-1)
theta_p1 = innerProduct(p1p, p1p2)/(p1p2_l * pp1_l + eps)
theta_p2 = innerProduct(p2p, -p1p2)/(p1p2_l * pp2_l + eps)
theta_p1 = np.arccos(np.clip(theta_p1, -1., 1.)) * 180. / pi
theta_p2 = np.arccos(np.clip(theta_p2, -1., 1.)) * 180. / pi
theta_p1 = np.minimum(theta_p1, 180. - theta_p1)
theta_p2 = np.minimum(theta_p2, 180. - theta_p2)
theta_p = np.minimum(theta_p1, theta_p2)
on_line = np.stack([on_line_1, on_line_2, on_line], axis=-1)
return pm, dist, on_line, theta_p
def generate_html(imglst, folder, table_keys=['gt', 'lsd'], img_name=True):
possible_keys = {'gt' : "groudtruth junction",
"lsd": "LSD, IPOL 2012, TPAMI 2010."
}
h = html()
keys = table_keys
values = [possible_keys[k] if k in possible_keys.keys() else k for k in keys]
with h.add(body()).add(div(id='content')):
h1('View of Results.')
with table().add(tbody()):
l = tr()
if img_name:
l += th('Imgname')
for k in values:
l += th(k)
for in_ in imglst:
l = tr()
if img_name:
l += td(in_)
for k in keys:
l += td(img(width =250, src='%s_%s.png'%(in_, k)) )
folder_name = folder
if not isdir(folder_name):
os.makedirs(folder_name)
with open('%s/index.html'%(folder_name), 'w') as fn:
print >> fn, h