forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoccano.py
179 lines (153 loc) Β· 7.54 KB
/
doccano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# coding=utf-8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
from decimal import Decimal
import numpy as np
from utils import convert_cls_examples, convert_ext_examples, set_seed
from paddlenlp.trainer.argparser import strtobool
from paddlenlp.utils.log import logger
def do_convert():
set_seed(args.seed)
tic_time = time.time()
if not os.path.exists(args.doccano_file):
raise ValueError("Please input the correct path of doccano file.")
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if len(args.splits) != 0 and len(args.splits) != 3:
raise ValueError("Only []/ len(splits)==3 accepted for splits.")
def _check_sum(splits):
return Decimal(str(splits[0])) + Decimal(str(splits[1])) + Decimal(str(splits[2])) == Decimal("1")
if len(args.splits) == 3 and not _check_sum(args.splits):
raise ValueError("Please set correct splits, sum of elements in splits should be equal to 1.")
with open(args.doccano_file, "r", encoding="utf-8") as f:
raw_examples = f.readlines()
def _create_ext_examples(
examples,
negative_ratio,
prompt_prefix="ζ
ζεΎε",
options=["ζ£ε", "θ΄ε"],
separator="##",
shuffle=False,
is_train=True,
schema_lang="ch",
):
entities, relations, aspects = convert_ext_examples(
examples, negative_ratio, prompt_prefix, options, separator, is_train, schema_lang
)
examples = entities + relations + aspects
if shuffle:
indexes = np.random.permutation(len(examples))
examples = [examples[i] for i in indexes]
return examples
def _create_cls_examples(examples, prompt_prefix, options, shuffle=False):
examples = convert_cls_examples(examples, prompt_prefix, options)
if shuffle:
indexes = np.random.permutation(len(examples))
examples = [examples[i] for i in indexes]
return examples
def _save_examples(save_dir, file_name, examples):
count = 0
save_path = os.path.join(save_dir, file_name)
with open(save_path, "w", encoding="utf-8") as f:
for example in examples:
f.write(json.dumps(example, ensure_ascii=False) + "\n")
count += 1
logger.info("Save %d examples to %s." % (count, save_path))
if len(args.splits) == 0:
if args.task_type == "ext":
examples = _create_ext_examples(
raw_examples,
args.negative_ratio,
args.prompt_prefix,
args.options,
args.separator,
args.is_shuffle,
schema_lang=args.schema_lang,
)
else:
examples = _create_cls_examples(raw_examples, args.prompt_prefix, args.options, args.is_shuffle)
_save_examples(args.save_dir, "train.txt", examples)
else:
if args.is_shuffle:
indexes = np.random.permutation(len(raw_examples))
index_list = indexes.tolist()
raw_examples = [raw_examples[i] for i in indexes]
else:
index_list = list(range(len(raw_examples)))
i1, i2, _ = args.splits
p1 = int(len(raw_examples) * i1)
p2 = int(len(raw_examples) * (i1 + i2))
train_ids = index_list[:p1]
dev_ids = index_list[p1:p2]
test_ids = index_list[p2:]
with open(os.path.join(args.save_dir, "sample_index.json"), "w") as fp:
maps = {"train_ids": train_ids, "dev_ids": dev_ids, "test_ids": test_ids}
fp.write(json.dumps(maps))
if args.task_type == "ext":
train_examples = _create_ext_examples(
raw_examples[:p1],
args.negative_ratio,
args.prompt_prefix,
args.options,
args.separator,
args.is_shuffle,
schema_lang=args.schema_lang,
)
dev_examples = _create_ext_examples(
raw_examples[p1:p2],
-1,
args.prompt_prefix,
args.options,
args.separator,
is_train=False,
schema_lang=args.schema_lang,
)
test_examples = _create_ext_examples(
raw_examples[p2:],
-1,
args.prompt_prefix,
args.options,
args.separator,
is_train=False,
schema_lang=args.schema_lang,
)
else:
train_examples = _create_cls_examples(raw_examples[:p1], args.prompt_prefix, args.options)
dev_examples = _create_cls_examples(raw_examples[p1:p2], args.prompt_prefix, args.options)
test_examples = _create_cls_examples(raw_examples[p2:], args.prompt_prefix, args.options)
_save_examples(args.save_dir, "train.txt", train_examples)
_save_examples(args.save_dir, "dev.txt", dev_examples)
_save_examples(args.save_dir, "test.txt", test_examples)
logger.info("Finished! It takes %.2f seconds" % (time.time() - tic_time))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--doccano_file", default="./data/doccano.json", type=str, help="The doccano file exported from doccano platform.")
parser.add_argument("--save_dir", default="./data", type=str, help="The path of data that you wanna save.")
parser.add_argument("--negative_ratio", default=5, type=int, help="Used only for the extraction task, the ratio of positive and negative samples, number of negtive samples = negative_ratio * number of positive samples")
parser.add_argument("--splits", default=[0.8, 0.1, 0.1], type=float, nargs="*", help="The ratio of samples in datasets. [0.6, 0.2, 0.2] means 60% samples used for training, 20% for evaluation and 20% for test.")
parser.add_argument("--task_type", choices=['ext', 'cls'], default="ext", type=str, help="Select task type, ext for the extraction task and cls for the classification task, defaults to ext.")
parser.add_argument("--options", default=["ζ£ε", "θ΄ε"], type=str, nargs="+", help="Used only for the classification task, the options for classification")
parser.add_argument("--prompt_prefix", default="ζ
ζεΎε", type=str, help="Used only for the classification task, the prompt prefix for classification")
parser.add_argument("--is_shuffle", default="True", type=strtobool, help="Whether to shuffle the labeled dataset, defaults to True.")
parser.add_argument("--seed", type=int, default=1000, help="Random seed for initialization")
parser.add_argument("--separator", type=str, default='##', help="Used only for entity/aspect-level classification task, separator for entity label and classification label")
parser.add_argument("--schema_lang", choices=["ch", "en"], default="ch", help="Select the language type for schema.")
args = parser.parse_args()
# yapf: enable
do_convert()