-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvbgmm.m
197 lines (178 loc) · 6.31 KB
/
vbgmm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
%% Variational Bayesian Gaussian Mixture Model(VB-GMM)
%
% @author Junhao HUA
% Create Time: 2012-12-5
% Last Update: 2013/1/2
%
% @reference
% M.bishop,pattern recognition and machine learning,2006
%
%%
function [label,model,L] = vbgmm(Data,K)
%% parameters Description:
% K the number of mixing components
% Data all observed data (dim*N)
% N the number of data
% dim the Dimension of data
% Alpha the weight vector of each Gaussian (1 x K)
% Mu the mean vector of each Gaussian (dim x K)
% Sigma the Covariance matrix of each Gaussian (dim x dim x K)
%
% the initialization of prior superparameters
% They can be set to small positive numbers to give
% broad prior distrbutions indicating ignorance about the prior
% Dirichlet Distribution Parameters:
% alpha0 1
% Wishart Distribution Parameters:
% invW0 dim x dim
% v0 1
% Gaussian Distribution Parameters:
% m0 dim x 1
% beta0 1
[dim,N] = size(Data);
prior = struct('alpha0',1,'beta0',1,'m0',mean(Data,2),'v0',dim+1,'invW0',eye(dim,dim));
logL0 = -inf;
esp = 1e-7;
% latent parameters : the probability of each point in each component
% r N x K
model.R = Initvb(Data,K);
t = 0;
maxtimes = 2000;
L = -inf(1,maxtimes);
while t < maxtimes
t = t +1;
model = MaxStep(Data,model,prior);
model = ExpectStep(Data,model);
logL = vbound(Data,model,prior)/N;
fprintf('%e %e \n',abs(logL-logL0),esp*abs(logL));
L(t) = logL;
if abs(logL-logL0) < esp*abs(logL)
break;
end
logL0 = logL;
end
L = L(1:t);
[~,label] = max(model.R,[],2);
disp(['Total iteratons:',num2str(t)]);
function model = MaxStep(data,model,prior)
%%
% update the statistics
% avgN 1 x K
% avgX dim x K
% avgS dim x dim x K
% update the superparameters
% the parameter of weight (1 x K):
% alpha 1 x K
% the parameters of preision (dim x dim x K):
% invW dim x dim x K inv(W)
% V 1 x K
% the parameters of mean:
% M dim x K
% beta 1 x K
[~,K] = size(model.R);
avgN = sum(model.R);
aXn = data*model.R;
avgX = bsxfun(@times,aXn,1./avgN);
ws = (prior.beta0*avgN)./(prior.beta0+avgN);
sqrtR = sqrt(model.R);
for i = 1:K
avgNS = bsxfun(@times,bsxfun(@minus,data,avgX(:,i)),sqrtR(:,i)');
avgS(:,:,i) = avgNS*avgNS'/avgN(i);
Xkm0 = avgX(:,i)-prior.m0;
model.invW(:,:,i) = prior.invW0 +avgNS*avgNS'+ ws(i).*(Xkm0*Xkm0');
end
model.alpha = prior.alpha0 + avgN;
model.V = prior.v0 + avgN;
model.beta = prior.beta0 + avgN;
model.M = bsxfun(@times,bsxfun(@plus,prior.beta0.*prior.m0,aXn),1./model.beta);
model.Sigma = avgS;
function model = ExpectStep(data,model)
%%
% update the moments of parameters
% EQ the expectation of Covariance matrix N x K
% E_logLambda the log expectation of precision 1 x K
% E_logPi the log expectation of the mixing proportion of the mixture components 1 x K
[dim,N] = size(data);
[~,K] = size(model.M);
EQ = zeros(N,K);
logW = zeros(1,K);
for i=1:K
U = chol(model.invW(:,:,i)); % Cholesky X=R'R
logW(i) = -2*sum(log(diag(U)));
Q = U'\bsxfun(@minus,data,model.M(:,i));
EQ(:,i) = dim/model.beta(i) + model.V(i)*dot(Q,Q,1); % N x 1
end
E_logLambda = sum(psi(0,bsxfun(@minus,model.V+1,(1:dim)')/2),1) + dim*log(2) + logW;
E_logPi = psi(0,model.alpha) - psi(0,sum(model.alpha)); % 1 x K
% update latent parameter: r
logRho = bsxfun(@minus,EQ,2*E_logPi + E_logLambda -dim*log(2*pi))/(-2);
model.logR = bsxfun(@minus,logRho,logsumexp(logRho,2));
model.R = exp(model.logR);
function R0 =Initvb(data,K)
%%
[~,N] = size(data);
[IDX,~] = kmeans(data',K,'emptyaction','drop','start','uniform');
R0 = zeros(N,K);
for i = 1:K
R0(:,i) = IDX == i;
end
function L = vbound(X, model, prior)
%% stopping criterion
alpha0 = prior.alpha0;
beta0 = prior.beta0;
m0 = prior.m0;
v0 = prior.v0;
invW0 = prior.invW0;
% Dirichlet
alpha = model.alpha;
% Gaussian
beta = model.beta;
m = model.M;
% Whishart
v = model.V;
invW = model.invW; %inv(W) = V'*V
R = model.R;
logR = model.logR;
[dim,k] = size(m);
nk = sum(R,1);
% pattern recognition and machine learning page496
Elogpi = psi(0,alpha)-psi(0,sum(alpha));
E_pz = dot(nk,Elogpi); %10.72
E_qz = dot(R(:),logR(:)); %10.75
logCoefDir0 = gammaln(k*alpha0)-k*gammaln(alpha0); % the coefficient of Dirichlet Distribution
E_ppi = logCoefDir0+(alpha0-1)*sum(Elogpi); %10.73
logCoefDir = gammaln(sum(alpha))-sum(gammaln(alpha));
E_qpi = dot(alpha-1,Elogpi)+logCoefDir; %10.76
U0 = chol(invW0);
sqrtR = sqrt(R);
xbar = bsxfun(@times,X*R,1./nk); % 10.52
logW = zeros(1,k);
trSW = zeros(1,k);
trM0W = zeros(1,k);
xbarmWxbarm = zeros(1,k);
mm0Wmm0 = zeros(1,k);
for i = 1:k
U = chol(invW(:,:,i));
logW(i) = -2*sum(log(diag(U)));
Xs = bsxfun(@times,bsxfun(@minus,X,xbar(:,i)),sqrtR(:,i)');
V = chol(Xs*Xs'/nk(i));
Q = V/U;
trSW(i) = dot(Q(:),Q(:)); % equivalent to tr(SW)=trace(S/M)
Q = U0/U;
trM0W(i) = dot(Q(:),Q(:));
q = U'\(xbar(:,i)-m(:,i));
xbarmWxbarm(i) = dot(q,q);
q = U'\(m(:,i)-m0);
mm0Wmm0(i) = dot(q,q);
end
ElogLambda = sum(psi(0,bsxfun(@minus,v+1,(1:dim)')/2),1)+dim*log(2)+logW; % 10.65
Epmu = sum(dim*log(beta0/(2*pi))+ElogLambda-dim*beta0./beta-beta0*(v.*mm0Wmm0))/2;
logB0 = v0*sum(log(diag(U0)))-0.5*v0*dim*log(2)-logmvgamma(0.5*v0,dim);
EpLambda = k*logB0+0.5*(v0-dim-1)*sum(ElogLambda)-0.5*dot(v,trM0W);
E_logpMu_Lambda = Epmu + EpLambda; % 10.74
Eqmu = 0.5*sum(ElogLambda+dim*log(beta/(2*pi)))-0.5*dim*k;
logB = -v.*(logW+dim*log(2))/2-logmvgamma(0.5*v,dim);
HqLambda = -0.5*sum((v-dim-1).*ElogLambda-v*dim)-sum(logB);
E_logqMu_Lambda = Eqmu - HqLambda;%10.77
E_pX = 0.5*dot(nk,ElogLambda-dim./beta-v.*trSW-v.*xbarmWxbarm-dim*log(2*pi)); %10.71
L = E_pX+E_pz+E_ppi+E_logpMu_Lambda-E_qz-E_qpi-E_logqMu_Lambda;