-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathCreateGmmSample.m
62 lines (57 loc) · 1.37 KB
/
CreateGmmSample.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
%
% create Guassian Mixture Data Sample
% initialize parameters randomly
%
%@input:
%
% N the number of data
% dim the Dimension of data
% M the number of Gaussian function
%
%@output:
%
% data dim-by-N
% mu dim-by-M
% Sigma dim x dim x M
% Aplha 1-by-M
% n 1 x M
%
% fixed = 1 or 0
function [data,mu,n] = CreateGmmSample(M,N,option)
dim = 2;
if strcmp(option.type,'cirlce')
Alpha = ones(1,M);
var = 0.5*ones(1,M);
mu=4*[cos((1:M)*2*pi/M);sin((1:M)*2*pi/M)];
elseif strcmp(option.type,'toy')
Alpha = ones(1,M);
var = 0.25*ones(1,M);
a = 3;
b = 5;
div_cut = M+2;
mu1 = [a*cos((2:M/2+1)*2*pi/div_cut);b*sin((2:M/2+1)*2*pi/div_cut)];
mu2 = [a*cos((0:M/2-1)*2*pi/div_cut)+a;-b*sin((0:M/2-1)*2*pi/div_cut)+sqrt(b^2-a^2)];
mu = [mu1,mu2];
end
Alpha = Alpha / norm(Alpha,1);
n=0;
for i = 1:M
if i~= M
n(i) = floor(N*Alpha(i));
else
n(i) = N-sum(n);
end
end
%
start = 0;
for i=1:M
x = randn(dim,n(i));
x = x.*var(i) + repmat(mu(:,i),1,n(i));
data(:,(start+1):start+n(i)) = x;
start = start + n(i);
end
if strcmp(option.type,'cirlce')
save('circlesmp.mat','data','mu','n')
elseif strcmp(option.type,'toy')
save('toysmp.mat','data','mu','n')
end