-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathWsPredictionRate.py
64 lines (56 loc) · 2.61 KB
/
WsPredictionRate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
import sys
import os
from DivideData import DivideData
from operator import itemgetter
class WsPredictionRate(object):
def __init__(self):
self.train_set = {}
self.test_set = {}
self.sim_matrix = {}
self.prediction_rate_matrix = {}
def generate_data_matrix(self, train_set_file, test_set_file, sim_file):
for line in DivideData.loadfile(train_set_file):
user, movie, rate, _ = line.split('::')
self.train_set.setdefault(user, {})
self.train_set[user][movie] = float(rate)
for line in DivideData.loadfile(test_set_file):
user, movie, rate, _ = line.split('::')
self.test_set.setdefault(user, {})
self.test_set[user][movie] = float(rate)
for line in DivideData.loadfile(sim_file):
forward_user, backward_user, sim = line.split('::')
self.sim_matrix.setdefault(forward_user, {})
self.sim_matrix[forward_user][backward_user] = float(sim)
def ws_prediction_one_user_rate(self, target_user, target_item, n=20):
fen_zi, fen_mu = float(0), float(0)
for user, sim in sorted(self.sim_matrix[target_user].iteritems(), key=itemgetter(1), reverse=True)[:n]:
if target_item in self.train_set[user]:
fen_zi += self.train_set[user][target_item] * self.sim_matrix[target_user][user]
fen_mu += self.sim_matrix[target_user][user]
if fen_mu == 0:
return 2.5
else:
return fen_zi / fen_mu
def ws_prediction(self):
for user in self.test_set:
for movie in self.test_set[user]:
self.prediction_rate_matrix.setdefault(user, {})
self.prediction_rate_matrix[user][movie] = self.ws_prediction_one_user_rate(user, movie)
print >> sys.stderr, '预测评分成功'
Prediction_rate_matrix = DivideData.transform_data_structure(self.prediction_rate_matrix)
DivideData.export_file('ml-1m/ws_prediction_rate_adcos.csv', Prediction_rate_matrix)
'''
更改相似度文件后,记得更改导出的文件名
'''
print >> sys.stderr, '导出预测评分数据成功'
if __name__ == '__main__':
train_set_file = os.path.join('ml-1m', 'train_set.csv')
test_set_file = os.path.join('ml-1m', 'test_set.csv')
sim_file = os.path.join('ml-1m', 'ADCOS_UPsim.csv')
'''
通过换不同的相似度文件,实现不同相似度算法进行的评分预测
'''
pr = WsPredictionRate()
pr.generate_data_matrix(train_set_file, test_set_file, sim_file)
pr.ws_prediction()