-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathColdStart_EvaluatePR.py
80 lines (72 loc) · 3.12 KB
/
ColdStart_EvaluatePR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
import sys
import os
import csv
from DivideData import DivideData
from operator import itemgetter
class EvaluatePRinDifferentN(object):
def __init__(self):
self.train_set = {}
self.test_set = {}
self.prediction_rate_matrix = {}
self.number_matrix = {}
def generate_data_matrix(self, train_set_file, test_set_file, prediction_rate_file):
for line in DivideData.loadfile(train_set_file):
user, movie, rate, _ = line.split('::')
self.train_set.setdefault(user, {})
self.train_set[user][movie] = float(rate)
for line in DivideData.loadfile(test_set_file):
user, movie, rate, _ = line.split('::')
self.test_set.setdefault(user, {})
self.test_set[user][movie] = float(rate)
for line in DivideData.loadfile(prediction_rate_file):
user, movie, prediction_rate = line.split('::')
self.prediction_rate_matrix.setdefault(user, {})
self.prediction_rate_matrix[user][movie] = float(prediction_rate)
def generate_number_matrix(self):
for user in self.test_set:
for movie, rate in self.test_set[user].iteritems():
self.number_matrix.setdefault(user, 0)
if rate >= 4:
self.number_matrix[user] += 1
def evaluate_PR_in_different_n(self, n=2):
mae_list = []
while n <= 20:
p, r = 0, 0
for user in self.test_set:
if int(user) in range(100, 200):
count_rs = float(0)
for movie, prediction_rate in sorted(self.prediction_rate_matrix[user].iteritems(),
key=itemgetter(1),
reverse=True)[:n]:
if self.test_set[user][movie] >= 4:
count_rs += 1
p += (count_rs / n)
if self.number_matrix[user] == 0:
r += 0
else:
r += (count_rs / self.number_matrix[user])
p = p / 100
r = r / 100
a = [n, p, r]
mae_list.append(a)
print >> sys.stderr, 'n = %s 时的 p = %f, r = %f ' % (n, p, r)
n += 1
self.export_file('ml-1m/coldstart_pr_cosup_dfm.csv', mae_list)
def export_file(self, filename, data):
with open(filename, "wb") as csvFile:
csv_writer = csv.writer(csvFile)
for line in data:
csv_writer.writerow(line)
csvFile.close()
if __name__ == '__main__':
train_set_file = os.path.join('ml-1m', 'train_set.csv')
test_set_file = os.path.join('ml-1m', 'test_set.csv')
sim_file = os.path.join('ml-1m', 'coldstart_prediction_rate.csv')
'''
通过换不同的相似度文件,实现不同相似度算法进行的评分预测
'''
epridn = EvaluatePRinDifferentN()
epridn.generate_data_matrix(train_set_file, test_set_file, sim_file)
epridn.generate_number_matrix()
epridn.evaluate_PR_in_different_n()