## Statistics with Recitation

National Taiwan University Fall 2020 Shiu-Sheng Chen

## Midterm Brief Review

Last Edited: December 05, 2020

### Hsien-Chen Chu T09303304 Econ1

Literature: S.S.Chen: Probability and Statistical Inference with R, **ch6-10**, 2019. I'd like to reiterate that this is merely a BRIEF review of midterm contents, so it leaves most of the proofs and inferences for you to revisit the textbook if needed. Important formulas and features are listed sequentially.

- 1. Normal Distribution:  $\sim N$ 
  - (a) Normal:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \Rightarrow X \sim N(\mu, \sigma^2)$$

(b) Standard Normal: def  $z = \frac{x-\mu}{\sigma}$ , then:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z)^2} \Rightarrow Z \sim N(0, 1)$$

- (c) Linear Trans.: given  $X \sim N(\mu, \sigma^2)$  and aX + b, then:  $aX + b \sim N(a\mu + b, a^2\sigma^2)$
- (d) i. i.i.d sum:  $Y = \sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$

ii. i.i.d mean: 
$$W = \frac{Y}{n} = \frac{\sum\limits_{i=1}^{n} X_i}{n} \sim N(\mu, \frac{\sigma^2}{n})$$

- (e) <u>General</u>: re-def  $W = \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n \Rightarrow W \sim N(\sum_{i=1}^n \alpha_i \mu_i, \sum_{i=1}^n \alpha_i^2 \sigma_i^2)$
- 2. Chi-square Distribution:  $\sim \chi^2$ 
  - (a) Chi-square:

$$f(x) = \frac{x^{\frac{k}{2}-1}}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}e^{-\frac{1}{2}x} \Rightarrow X \sim \chi^2(k)$$

Degrees of freedom: k

(b) MGF:

$$X_i \sim \chi^2(k) \Rightarrow M_X(t) = (\frac{1}{1 - 2t})^{\frac{k}{2}}$$

i. 
$$E(X) = k$$

ii. 
$$E(X^2) = k(k+2)$$

iii. 
$$Var(X) = 2k$$

(c) Chi-square sum: Suppose  $X_i \sim \chi^2(k_i)$ , then:

$$Y = \sum_{i=1}^{n} X_i \sim \chi^2(\sum_{i=1}^{n} k_i)$$

(d) Standard Normal & Chi-square: given  $Z \sim N(0,1)$ , then:

$$Z^2 \sim \chi^2(1)$$

Lemma

Given 
$$\{Z_1, Z_2, \dots, Z_n\} \sim^{i.i.d.} N(0,1)$$
, let  $X = \sum_{i=1}^k Z_i^2$ , then  $X = X \sim \chi^2(k)$ .

- 3. Student's t Distribution:  $\sim t$ 
  - (a) Standard Normal, Chi-square & t: given  $Z \sim N(0,1), W \sim \chi^2(k)$ , then:

$$X = \frac{Z}{\sqrt{\frac{W}{k}}} \sim t(k)$$

Degrees of freedom:  $\mathbf{k}$ 

(b) Features: (parameters)

$$t(k) = \frac{N(0,1)}{\sqrt{\frac{\chi^2(k)}{k}}}$$

i. 
$$E(X) = E(Z\frac{1}{\sqrt{\frac{W}{k}}}) = E(Z)E(\frac{1}{\sqrt{\frac{W}{k}}}) = 0 \times E(\frac{1}{\sqrt{\frac{W}{k}}}) = 0$$

ii. 
$$Var(X) = \frac{k}{k-2}$$
, for  $k > 2$ 

- 4. F Distribution:  $\sim F$ 
  - (a) **F**:

$$X \sim F(k_1, k_2)$$

Degrees of freedom:  $k_1, k_2$ 

(b) **Chi-square & F:** given  $X_1 \sim \chi^2(k_1), \ X_2 \sim \chi^2(k_2), \ \text{then:}$ 

$$X = \frac{X_1/k_1}{X_2/k_2} \sim F(k_1, k_2)$$

<u>Remarks</u>: F distribution is the ratio of 2 Chi-square distributions, each divided by its own degrees of freedom. And, suppose  $Y = \frac{1}{X}$ , then:  $Y \sim F(k_2, k_1)$  by definition.

(c) **t** & **F**: given  $X \sim t(k)$ , then:

$$X^2 \sim F(1,k)$$

## 5. Random Samples & Descriptive Stats:

- (a) Random Samples:  $\{X_i\}_{i=1}^n \sim^{i.i.d.} (\mu, \sigma^2)$
- (b) Statistics:

  - i. Sample mean:  $\bar{X_n}=\frac{\sum\limits_{i=1}^n X_i}{n}$  ii. Sample variance:  $S_n^2=\frac{\sum\limits_{i=1}^n (X_i-\bar{X_n})^2}{n-1}$
- (c) Suppose  $\{X_i\}_{i=1}^n \sim^{i.i.d.} N(\mu, \sigma^2)$ , then:

$$\begin{cases}
\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n}) \\
\frac{\sum_i (X_i - \bar{X}_n)^2}{\sigma^2} = \frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1) \\
\frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} \sim t(n-1)
\end{cases} \tag{1}$$

<u>Recall</u>: 1.(d) i.  $\rightarrow$  i.i.d. mean, and  $\bar{X_n} \perp S_n^2$  (indep.).

<u>recall.</u> 1.(a) 1.  $\to$  1.1.a. mean, and  $X_n \perp S_n^2$  (indep.). (d) Suppose  $\{X_i\}_{i=1}^m \sim^{i.i.d.} N(\mu_X, \sigma_X^2)$  and  $\{Y_i\}_{i=1}^n \sim^{i.i.d.} N(\mu_Y, \sigma_Y^2)$ , then:

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(m-1, \ n-1)$$

Degrees of freedom:  $k_X = m - 1$ ,  $k_Y = n - 1$ 

## 6. Convergence:

(a) Markov Inequality: given a random variable  $X, \forall m > 0$ ,

$$P(X \ge m) \le \frac{E(X)}{m}$$

(b) Chebyshev Inequality: given a random variable  $Y \sim (E(Y), Var(Y)), \forall \varepsilon >$ 0,

$$P(|Y - E(Y)| \ge \varepsilon) \le \frac{Var(Y)}{\varepsilon^2}$$

- (c) Convergence:
  - i. Converge in Probability:

$$\begin{cases}
\lim_{n \to \infty} P(|Y_n - c| < \varepsilon) = 1 \Rightarrow Y_n \xrightarrow{p} c \\
\lim_{n \to \infty} P(|Y_n - Y| < \varepsilon) = 1 \Rightarrow Y_n \xrightarrow{p} Y
\end{cases}$$
(2)

ii. Converge in Distribution:

$$\begin{cases}
\lim_{n \to \infty} F_n(y) = F_Y(y) \Rightarrow Y_n \xrightarrow{d} Y \\
\lim_{n \to \infty} M_{Y_n}(t) = M_Y(t) \Rightarrow Y_n \xrightarrow{d} Y
\end{cases}$$
(3)

iii. Converge in Mean Square:

$$\begin{cases}
E[(Y_n - c)^2] \to 0 \text{ as } n \to \infty \Rightarrow Y_n \xrightarrow{ms} c \\
E[(Y_n - Y)^2] \to 0 \text{ as } n \to \infty \Rightarrow Y_n \xrightarrow{ms} Y
\end{cases}$$
(4)

(d) Relationship:

$$\lim_{n \to \infty} E(Y_n) = c, \quad \lim_{n \to \infty} Var(Y_n) = 0$$

$$\Leftrightarrow Y_n \xrightarrow{ms} c \Rightarrow Y_n \xrightarrow{p} c$$

Remarks: The first half of cond. is an "iff", and the second half is an "if".

(e) **WLLN** (Weak Law of Large Numbers): given  $\{X_i\}_{i=1}^n$ ,  $Var(X_i) < \infty$ . Let  $\bar{X}_n = \frac{\sum\limits_{i=1}^n X_i}{n}$ , then:

$$\bar{X}_n \xrightarrow{p} E(X_1)$$

<u>Remarks</u>: With a large scale of samples  $(n \to \infty)$ , the sample mean  $(\bar{X}_n)$  will be close to the expected value  $(= E(X_1) = \mu)$ .

- i. k-th moments: given  $E(X_1^r) < \infty$ , then:  $\frac{\sum_i X_i^r}{n} \xrightarrow{p} E(X_1^r)$  given  $E(X_1Y_1) < \infty$ , then:  $\frac{\sum_i X_i Y_i}{n} \xrightarrow{p} E(X_1Y_1)$
- ii. Application: Suppose  $W_n \sim Binomial(n, \mu)$ , let  $Y_n = \frac{W_n}{n}$ , then:  $Y_n \stackrel{p}{\to} \mu$
- (f) **CLT** (Central Limit Theorem): given  $\{X_i\}_{i=1}^n$ ,  $Var(X_i) < \infty$ ,  $E(X_1) = \mu < \infty$ ,  $Var(X_1) = \sigma^2 < \infty$ , then:

$$\frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{Var(\bar{X}_n)}} = \frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} \xrightarrow{d} N(0, 1)$$

- (g) Other Convergences:
  - i. **CMT** (Continuous Mapping Theorem):  $g(\cdot)$  conti., then:  $g(X_n) \xrightarrow{p} g(X)$
  - ii.  $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$ ,  $X_n \xrightarrow{d} c \Rightarrow X_n \xrightarrow{p} c$
  - iii. Slutsky's Theorem: given  $X_n \xrightarrow{d} X$ ,  $Y_n \xrightarrow{p} c$ , then:

$$[X_n + Y_n / X_n Y_n / \frac{X_n}{Y_n}] \xrightarrow{d} [X + c / cX / \frac{X}{c}, c \neq 0]$$

iv. The Delta Method

### 7. Point Estimation:

(a) **MME** (Method of Moments Estimators): given pdf  $f(x, \theta_1, \theta_2, \dots, \theta_k)$ , solve:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{j}=m_{j}(\hat{\theta}_{1},\hat{\theta}_{2},\ldots,\hat{\theta}_{k})\xrightarrow{p}m_{j}(\theta_{1},\theta_{2},\ldots,\theta_{k}),\ j=1,2,\ldots,k$$

<u>Remarks</u>: Sample's j-th moments = Population's j-th moments(by WLLN).

# (b) **MLE** (Maximum Likelihood Estimator): Likelihood function

$$\mathcal{L}(\theta) = \prod_{i} f(x_i, \theta), \ \theta = \underset{\theta \in \Theta}{\operatorname{arg max}} \mathcal{L}(\theta)$$

 $\rightarrow$  Find MLE by solving FOC:

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0 \text{ or } \frac{\partial \ln \mathcal{L}(\theta)}{\partial \theta} = 0$$

#### i. Unbiased:

Unbiased Estimator:  $\hat{\theta}$ , we expect that:

$$E(\hat{\theta}) = \theta$$

If not, then there exists bias:  $B(\theta) = E(\hat{\theta}) - \theta$ 

Suppose  $\{X_i\}_{i=1}^n \sim^{i.i.d.} N(\mu, \sigma^2)$ , then:

$$\begin{cases}
\bar{X} = \frac{\sum\limits_{i=1}^{n} X_i}{n} \Rightarrow E(\bar{X}) = \mu \text{ (unbiased)} \\
S^2 = \frac{\sum\limits_{i=1}^{n} (X_i - \bar{X})^2}{n-1} \Rightarrow E(S^2) = \sigma^2 \text{ (unbiased)} \\
\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^{n} (X_i - \bar{X})^2}{n} \Rightarrow E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2 \text{ (biased)}
\end{cases}$$
(5)

#### Remarks:

The difference between  $S^2$  and  $\hat{\sigma}^2$  is the <u>denominator</u>(n-1 vs n). Apparently,  $\bar{X}$  and  $S^2$  are unbiased estimators of  $\mu$  and  $\sigma^2$ , respectively, while  $\hat{\sigma}^2$  is a biased one of  $\sigma^2$ , with its  $B(\hat{\sigma}^2) = -\frac{1}{n}\sigma^2$ .

 $\rightarrow$  **MVUE** (Minimum Variance Unbiased Estimator):  $\hat{\theta}$  is MVUE of  $\theta \Leftrightarrow E(\hat{\theta}) = \theta, \ \forall \theta \Leftrightarrow Var(\hat{\theta}) \leq Var(\hat{\theta}^*), \ \forall \hat{\theta}^*, \ E(\hat{\theta}^*) = \theta$ 

#### ii. Efficient:

MSE (Mean Squared Error):

$$MSE(\hat{\theta}) \equiv E[(\hat{\theta} - \theta)^2] \Rightarrow MSE(\hat{\theta_n}) = Var(\hat{\theta_n}) + (B(\theta))^2$$

Remarks: An estimator that has a smaller MSE is the more efficient one, whether it is unbiased. Furthermore, from (i)'s example, we know  $MSE(S^2) = \frac{2\sigma^4}{n-1} + 0 = \frac{2\sigma^4}{n-1}$  and  $MSE(\hat{\sigma}^2) = \frac{2(n-1)\sigma^4}{n^2} + (-\frac{\sigma^2}{n})^2 = \frac{(2n-1)\sigma^4}{n^2}$   $\Rightarrow MSE(\hat{\sigma}^2) < MSE(S^2)$ 

Thus, the biased  $\hat{\sigma}^2$  is a more efficient estimator than the unbiased  $S^2$ .

iii. Consistent:  $\hat{\theta}_n$  is a consistent estimator of  $\theta$  when:

$$\hat{\theta}_n \xrightarrow{p} \theta$$

Remarks: A subscript n reminds us that this feature is related to the sample size(similar to WLLN). Again, from (i)'s example, we eventually know  $\bar{X}_n$  is a consistent estimator of  $\mu$ , and both  $S_n^2$  and  $\hat{\sigma}_n^2$  are consistent estimators of  $\sigma^2$ (proved by WLLN and CMT).

**MSE Consistent:**  $\hat{\theta}_n$  is a MSE consistent estimator of  $\theta$  when:

$$\hat{\theta}_n \xrightarrow{ms} \theta$$

Also, consider

$$\hat{\theta}_n \xrightarrow{ms} \theta \Rightarrow \hat{\theta}_n \xrightarrow{p} \theta$$

Remarks: MSE consistent is based on the idea of mean square convergence. From 6.(d)  $Relationship \to \text{If } \hat{\theta}_n$  is MSE consistent, then it is a consistent estimator. Thus, to evaluate whether  $\hat{\theta}_n$  is a consistent estimator, we can simply check if  $\{\lim_{n\to\infty} E(\hat{\theta}_n) = \theta, \lim_{n\to\infty} Var(\hat{\theta}_n) = 0\}$  were satisfied.

**Asymptotically Unbiased:**  $\hat{\theta}_n$  is asymptotically unbiased when:

$$\lim_{n \to \infty} E(\hat{\theta}_n) = \theta$$

And,

$$\lim_{n \to \infty} E(\hat{\theta}_n) = \lim_{n \to \infty} \theta = \theta$$

Remarks: If  $\hat{\theta}_n$  is unbiased, then it is also asymptotically unbiased.