forked from deepakn97/relationPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
209 lines (161 loc) · 8.86 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import time
from layers import SpGraphAttentionLayer, ConvKB
CUDA = torch.cuda.is_available() # checking cuda availability
class SpGAT(nn.Module):
def __init__(self, num_nodes, nfeat, nhid, relation_dim, dropout, alpha, nheads):
"""
Sparse version of GAT
nfeat -> Entity Input Embedding dimensions
nhid -> Entity Output Embedding dimensions
relation_dim -> Relation Embedding dimensions
num_nodes -> number of nodes in the Graph
nheads -> Used for Multihead attention
"""
super(SpGAT, self).__init__()
self.dropout = dropout
self.dropout_layer = nn.Dropout(self.dropout)
self.attentions = [SpGraphAttentionLayer(num_nodes, nfeat,
nhid,
relation_dim,
dropout=dropout,
alpha=alpha,
concat=True)
for _ in range(nheads)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
# W matrix to convert h_input to h_output dimension
self.W = nn.Parameter(torch.zeros(size=(relation_dim, nheads * nhid)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.out_att = SpGraphAttentionLayer(num_nodes, nhid * nheads,
nheads * nhid, nheads * nhid,
dropout=dropout,
alpha=alpha,
concat=False
)
def forward(self, Corpus_, batch_inputs, entity_embeddings, relation_embed,
edge_list, edge_type, edge_embed, edge_list_nhop, edge_type_nhop):
x = entity_embeddings
edge_embed_nhop = relation_embed[
edge_type_nhop[:, 0]] + relation_embed[edge_type_nhop[:, 1]]
x = torch.cat([att(x, edge_list, edge_embed, edge_list_nhop, edge_embed_nhop)
for att in self.attentions], dim=1)
x = self.dropout_layer(x)
out_relation_1 = relation_embed.mm(self.W)
edge_embed = out_relation_1[edge_type]
edge_embed_nhop = out_relation_1[
edge_type_nhop[:, 0]] + out_relation_1[edge_type_nhop[:, 1]]
x = F.elu(self.out_att(x, edge_list, edge_embed,
edge_list_nhop, edge_embed_nhop))
return x, out_relation_1
class SpKBGATModified(nn.Module):
def __init__(self, initial_entity_emb, initial_relation_emb, entity_out_dim, relation_out_dim,
drop_GAT, alpha, nheads_GAT):
'''Sparse version of KBGAT
entity_in_dim -> Entity Input Embedding dimensions
entity_out_dim -> Entity Output Embedding dimensions, passed as a list
num_relation -> number of unique relations
relation_dim -> Relation Embedding dimensions
num_nodes -> number of nodes in the Graph
nheads_GAT -> Used for Multihead attention, passed as a list '''
super().__init__()
self.num_nodes = initial_entity_emb.shape[0]
self.entity_in_dim = initial_entity_emb.shape[1]
self.entity_out_dim_1 = entity_out_dim[0]
self.nheads_GAT_1 = nheads_GAT[0]
self.entity_out_dim_2 = entity_out_dim[1]
self.nheads_GAT_2 = nheads_GAT[1]
# Properties of Relations
self.num_relation = initial_relation_emb.shape[0]
self.relation_dim = initial_relation_emb.shape[1]
self.relation_out_dim_1 = relation_out_dim[0]
self.drop_GAT = drop_GAT
self.alpha = alpha # For leaky relu
self.final_entity_embeddings = nn.Parameter(
torch.randn(self.num_nodes, self.entity_out_dim_1 * self.nheads_GAT_1))
self.final_relation_embeddings = nn.Parameter(
torch.randn(self.num_relation, self.entity_out_dim_1 * self.nheads_GAT_1))
self.entity_embeddings = nn.Parameter(initial_entity_emb)
self.relation_embeddings = nn.Parameter(initial_relation_emb)
self.sparse_gat_1 = SpGAT(self.num_nodes, self.entity_in_dim, self.entity_out_dim_1, self.relation_dim,
self.drop_GAT, self.alpha, self.nheads_GAT_1)
self.W_entities = nn.Parameter(torch.zeros(
size=(self.entity_in_dim, self.entity_out_dim_1 * self.nheads_GAT_1)))
nn.init.xavier_uniform_(self.W_entities.data, gain=1.414)
def forward(self, Corpus_, adj, batch_inputs, train_indices_nhop):
# getting edge list
edge_list = adj[0]
edge_type = adj[1]
edge_list_nhop = torch.cat(
(train_indices_nhop[:, 3].unsqueeze(-1), train_indices_nhop[:, 0].unsqueeze(-1)), dim=1).t()
edge_type_nhop = torch.cat(
[train_indices_nhop[:, 1].unsqueeze(-1), train_indices_nhop[:, 2].unsqueeze(-1)], dim=1)
if(CUDA):
edge_list = edge_list.cuda()
edge_type = edge_type.cuda()
edge_list_nhop = edge_list_nhop.cuda()
edge_type_nhop = edge_type_nhop.cuda()
edge_embed = self.relation_embeddings[edge_type]
start = time.time()
self.entity_embeddings.data = F.normalize(
self.entity_embeddings.data, p=2, dim=1).detach()
# self.relation_embeddings.data = F.normalize(
# self.relation_embeddings.data, p=2, dim=1)
out_entity_1, out_relation_1 = self.sparse_gat_1(
Corpus_, batch_inputs, self.entity_embeddings, self.relation_embeddings,
edge_list, edge_type, edge_embed, edge_list_nhop, edge_type_nhop)
mask_indices = torch.unique(batch_inputs[:, 2]).cuda()
mask = torch.zeros(self.entity_embeddings.shape[0]).cuda()
mask[mask_indices] = 1.0
entities_upgraded = self.entity_embeddings.mm(self.W_entities)
out_entity_1 = entities_upgraded + \
mask.unsqueeze(-1).expand_as(out_entity_1) * out_entity_1
out_entity_1 = F.normalize(out_entity_1, p=2, dim=1)
self.final_entity_embeddings.data = out_entity_1.data
self.final_relation_embeddings.data = out_relation_1.data
return out_entity_1, out_relation_1
class SpKBGATConvOnly(nn.Module):
def __init__(self, initial_entity_emb, initial_relation_emb, entity_out_dim, relation_out_dim,
drop_GAT, drop_conv, alpha, alpha_conv, nheads_GAT, conv_out_channels):
'''Sparse version of KBGAT
entity_in_dim -> Entity Input Embedding dimensions
entity_out_dim -> Entity Output Embedding dimensions, passed as a list
num_relation -> number of unique relations
relation_dim -> Relation Embedding dimensions
num_nodes -> number of nodes in the Graph
nheads_GAT -> Used for Multihead attention, passed as a list '''
super().__init__()
self.num_nodes = initial_entity_emb.shape[0]
self.entity_in_dim = initial_entity_emb.shape[1]
self.entity_out_dim_1 = entity_out_dim[0]
self.nheads_GAT_1 = nheads_GAT[0]
self.entity_out_dim_2 = entity_out_dim[1]
self.nheads_GAT_2 = nheads_GAT[1]
# Properties of Relations
self.num_relation = initial_relation_emb.shape[0]
self.relation_dim = initial_relation_emb.shape[1]
self.relation_out_dim_1 = relation_out_dim[0]
self.drop_GAT = drop_GAT
self.drop_conv = drop_conv
self.alpha = alpha # For leaky relu
self.alpha_conv = alpha_conv
self.conv_out_channels = conv_out_channels
self.final_entity_embeddings = nn.Parameter(
torch.randn(self.num_nodes, self.entity_out_dim_1 * self.nheads_GAT_1))
self.final_relation_embeddings = nn.Parameter(
torch.randn(self.num_relation, self.entity_out_dim_1 * self.nheads_GAT_1))
self.convKB = ConvKB(self.entity_out_dim_1 * self.nheads_GAT_1, 3, 1,
self.conv_out_channels, self.drop_conv, self.alpha_conv)
def forward(self, Corpus_, adj, batch_inputs):
conv_input = torch.cat((self.final_entity_embeddings[batch_inputs[:, 0], :].unsqueeze(1), self.final_relation_embeddings[
batch_inputs[:, 1]].unsqueeze(1), self.final_entity_embeddings[batch_inputs[:, 2], :].unsqueeze(1)), dim=1)
out_conv = self.convKB(conv_input)
return out_conv
def batch_test(self, batch_inputs):
conv_input = torch.cat((self.final_entity_embeddings[batch_inputs[:, 0], :].unsqueeze(1), self.final_relation_embeddings[
batch_inputs[:, 1]].unsqueeze(1), self.final_entity_embeddings[batch_inputs[:, 2], :].unsqueeze(1)), dim=1)
out_conv = self.convKB(conv_input)
return out_conv