-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathwavenet.py
553 lines (445 loc) · 20 KB
/
wavenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import sys
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import vconv
import numpy as np
from numpy import prod as np_prod
import util
import netmisc
from collections import namedtuple
import torch.nn.functional as F
class GatedResidualCondConv(nn.Module):
def __init__(self, wavenet_vc, hps, n_cond, stride, dil, final_layer=False,
parent_vc=None, name=None):
"""
filter_sz: # elements in the dilated kernels
"""
super(GatedResidualCondConv, self).__init__()
self.wavenet_vc = wavenet_vc
self.final_layer = final_layer
self.conv_signal = nn.Conv1d(hps.n_res, hps.n_dil, hps.filter_sz,
dilation=dil, bias=hps.bias)
self.conv_gate = nn.Conv1d(hps.n_res, hps.n_dil, hps.filter_sz,
dilation=dil, bias=hps.bias)
self.proj_signal = nn.Conv1d(n_cond, hps.n_dil, kernel_size=1, bias=False)
self.proj_gate = nn.Conv1d(n_cond, hps.n_dil, kernel_size=1, bias=False)
self.dil_skp = nn.Conv1d(hps.n_dil, hps.n_skp, kernel_size=1, bias=False)
if not final_layer:
self.dil_res = nn.Conv1d(hps.n_dil, hps.n_res, kernel_size=1, bias=False)
# The dilated autoregressive convolution produces an output at the
# right-most position of the receptive field. (At the very end of a
# stack of these, the output corresponds to the position just after
# this, but within the stack of convolutions, outputs right-aligned.
dil_filter_sz = (hps.filter_sz - 1) * dil + 1
self.vc = vconv.VirtualConv(filter_info=(dil_filter_sz - 1, 0),
parent=parent_vc, name=name)
self.apply(netmisc.xavier_init)
def post_init(self):
"""
Initialize offset tensors
"""
self.register_buffer('leads', torch.empty(4, dtype=torch.long))
self.init_leads()
self.set_full()
def init_leads(self):
"""
Update skip_lead and cond_lead to reflect changed geometry
or chunk size. Call this after vconv.compute_inputs is called
"""
cond_lead, r_off = vconv.output_offsets(self.wavenet_vc['beg_grcc'],
self.vc)
assert r_off == 0
if self.vc == self.wavenet_vc['end_grcc']:
skip_lead = 0
else:
skip_lead, r_off = vconv.output_offsets(self.vc.child,
self.wavenet_vc['end_grcc'])
assert r_off == 0
self.leads[0] = cond_lead
self.leads[1] = skip_lead
self.leads[2] = self.vc.l_wing_sz
self.leads[3] = 0
self.global_rf = self.vc.in_len()
self.local_rf = self.vc.filter_size()
def set_incremental(self):
"""
Set skip_lead and cond_lead for incremental operation
"""
self.cond = 3
self.skip = 3
self.lw = 2
def set_full(self):
self.cond = 0
self.skip = 1
self.lw = 2
def forward(self, x, cond):
"""
B, T: batchsize, win_size (determined from input)
C, R, D, S: n_cond, n_res, n_dil, n_skp
x: (B, R, T) (necessary shape for Conv1d)
cond: (B, C, T) (necessary shape for Conv1d)
returns: sig: (B, R, T), skp: (B, S, T)
"""
cl, sl, lw = self.leads[self.cond], self.leads[self.skip], self.leads[self.lw]
filt = self.conv_signal(x) + self.proj_signal(cond[:,:,cl:])
gate = self.conv_gate(x) + self.proj_gate(cond[:,:,cl:])
z = torch.tanh(filt) * torch.sigmoid(gate)
skp = self.dil_skp(z[:,:,sl:])
if self.final_layer:
sig = x[:,:,lw:]
else:
sig = self.dil_res(z)
sig += x[:,:,lw:]
return sig, skp
class Conditioning(nn.Module):
"""
Module for merging up-sampled local conditioning vectors
with voice ids.
"""
def __init__(self, n_speakers, n_embed, bias=True):
super(Conditioning, self).__init__()
# Look at nn.embedding
self.n_speakers = n_speakers
self.speaker_embedding = nn.Linear(n_speakers, n_embed, bias)
self.register_buffer('eye', torch.eye(n_speakers))
self.apply(netmisc.xavier_init)
def forward(self, lc, speaker_inds):
"""
I, G, S: n_in_chan, n_embed_chan, n_speakers
lc : (B, T, I)
speaker_inds: (B)
returns: (B, T, I+G)
"""
# one_hot: (B, S)
one_hot = F.one_hot(speaker_inds.long(), self.n_speakers).float()
# one_hot2 = util.gather_md_jit(self.eye, 0, (1,0), speaker_inds).permute(1, 0)
gc = self.speaker_embedding(one_hot) # gc: (B, G)
gc_rep = gc.unsqueeze(2).expand(-1, -1, lc.shape[2])
all_cond = torch.cat((lc, gc_rep), dim=1)
return all_cond
class Upsampling(nn.Module):
def __init__(self, n_chan, filter_sz, stride, parent_vc, bias=True, name=None):
super(Upsampling, self).__init__()
# See upsampling_notes.txt: padding = filter_sz - stride
# and: left_offset = left_wing_sz - end_padding
end_padding = stride - 1
self.vc = vconv.VirtualConv(
filter_info=filter_sz, stride=stride,
padding=(end_padding, end_padding), is_downsample=False,
parent=parent_vc, name=name
)
self.tconv = nn.ConvTranspose1d(n_chan, n_chan, filter_sz, stride,
padding=filter_sz - stride, bias=bias)
self.apply(netmisc.xavier_init)
def forward(self, lc):
"""
B, T, S, C: batch_sz, timestep, less-frequent timesteps, input channels
lc: (B, C, S)
returns: (B, C, T)
"""
lc_up = self.tconv(lc)
return lc_up
class Conv1dWrap(nn.Conv1d):
"""
Simple wrapper that ensures initialization
"""
def __init__(self, name, parent_vc, **kwargs):
super(Conv1dWrap, self).__init__(**kwargs)
self.apply(netmisc.xavier_init)
self.vc = vconv.VirtualConv(filter_info=kwargs['kernel_size'],
stride=kwargs['stride'],
name=name, parent=parent_vc)
class WaveNet(nn.Module):
# see https://pytorch.org/docs/stable/jit_language_reference.html \\
# #for-loops-over-constant-nn-modulelist
__constants__ = ['conv_layers']
def __init__(self, hps, parent_vc=None):
super(WaveNet, self).__init__()
self.n_blocks = hps.n_blocks
self.n_block_layers = hps.n_block_layers
self.n_skp = hps.n_skp
self.n_res = hps.n_res
self.n_quant = hps.n_quant
self.bias = hps.bias
post_jitter_filt_sz = 3
lc_input_stepsize = np_prod(hps.lc_upsample_strides)
lc_conv_name = f'LC_Conv(filter_size={post_jitter_filt_sz})'
self.lc_conv = Conv1dWrap(lc_conv_name, parent_vc, in_channels=hps.n_lc_in,
out_channels=hps.n_lc_out, kernel_size=post_jitter_filt_sz,
stride=1, bias=hps.bias)
self.vc = dict()
self.vc['beg'] = self.lc_conv.vc
cur_vc = self.vc['beg']
# This VC is the first processing of the local conditioning after the
# Jitter. It is the starting point for the commitment loss aggregation
self.lc_upsample = nn.Sequential()
# WaveNet is a stand-alone model, so parent_vc is None
# The Autoencoder model in model.py will link parent_vcs together.
iterator = enumerate(zip(hps.lc_upsample_filt_sizes, hps.lc_upsample_strides))
for i, (filt_sz, stride) in iterator:
name = f'Upsampling_{i}(filter_sz={filt_sz}, stride={stride})'
mod = Upsampling(hps.n_lc_out, filt_sz, stride, cur_vc, name=name)
self.lc_upsample.add_module(str(i), mod)
cur_vc = mod.vc
# This vc describes the bounds of the input wav corresponding to the
# local conditioning vectors
self.vc['last_upsample'] = cur_vc
self.cond = Conditioning(hps.n_speakers, hps.n_global_embed)
self.base_layer = Conv1dWrap('Base Layer', cur_vc, in_channels=hps.n_quant,
out_channels=hps.n_res, kernel_size=1, stride=1, dilation=1,
bias=self.bias)
self.base_layer.vc.do_trim_input = True
cur_vc = self.base_layer.vc
self.conv_layers = nn.ModuleList()
n_cond = hps.n_lc_out + hps.n_global_embed
for b in range(self.n_blocks):
for bl in range(self.n_block_layers):
dil = 2**bl
name = f'GRCC_{b},{bl}(dil={dil})'
final_layer = (b + 1 == self.n_blocks and bl + 1 ==
self.n_block_layers)
grc = GatedResidualCondConv(self.vc, hps, n_cond=n_cond, stride=1, dil=dil,
final_layer=final_layer, parent_vc=cur_vc, name=name)
self.conv_layers.append(grc)
cur_vc = grc.vc
# Each module in the stack needs to know the dimensions of
# the input and output of the overall stack, in order to trim
# residual connections
self.vc['beg_grcc'] = self.conv_layers[0].vc
self.vc['end_grcc'] = self.conv_layers[-1].vc
self.relu = nn.ReLU()
self.post1 = Conv1dWrap('Post1', cur_vc, in_channels=hps.n_skp,
out_channels=hps.n_post, kernel_size=1, stride=1, bias=hps.bias)
self.post2 = Conv1dWrap('Post2', self.post1.vc, in_channels=hps.n_post,
out_channels=hps.n_quant, kernel_size=1, stride=1, bias=hps.bias)
self.logsoftmax = nn.LogSoftmax(1) # (B, Q, N)
self.vc['main'] = self.post2.vc
def set_parent_vc(self, parent_vc):
self.vc['beg'].parent = parent_vc
parent_vc.child = self.vc['beg']
def post_init(self, n_win_batch):
one_gr = vconv.GridRange((0, int(1e12)), (0, 1), 1)
win_gr = vconv.GridRange((0, int(1e12)), (0, n_win_batch), 1)
vconv.compute_inputs(self.vc['end_grcc'], win_gr)
di = self.vc['beg_grcc'].input_gr
wi = self.vc['beg'].parent.input_gr
self.wav_cond_offset = [int(di.sub[0] - wi.sub[0]), int(di.sub[1] -
wi.sub[0])]
vconv.compute_inputs(self.vc['end_grcc'], one_gr)
for layer in self.conv_layers:
layer.post_init()
self.base_global_rf = self.conv_layers[0].global_rf
self.n_win_batch = n_win_batch
def get_input_size(self, output_size):
"""
Computes the input size needed for desired output_size.
Warning! This function has side effects.
"""
win_gr = vconv.GridRange((0, int(1e12)), (0, output_size), 1)
vconv.compute_inputs(self.vc['end_grcc'], win_gr)
return self.vc['beg'].parent.in_len()
def set_n_replicas(self, n_replicas):
self.n_replicas = n_replicas
def set_incremental(self):
"""
Set cond_lead and skip_leads for incremental mode
"""
for layer in self.conv_layers:
layer.set_incremental()
def set_full(self):
"""
Set for full inference mode
"""
for layer in self.conv_layers:
layer.set_full()
def forward(self, wav, lc_sparse, speaker_inds, jitter_index):
if self.training:
return self.forward_train(wav, lc_sparse, speaker_inds,
jitter_index)
else:
return self.forward_test(wav, lc_sparse, speaker_inds,
jitter_index)
def forward_train(self, wav, lc_sparse, speaker_inds, jitter_index):
"""
wav: (n_batch, n_quant, n_wav_ts)
lc: (n_batch, n_lc_in, n_cond_ts)
speaker_inds: (n_batch, n_wav_ts(?))
outputs: (n_batch, n_quant, ?)
"""
to_add = torch.arange(0, jitter_index.nelement(),
jitter_index.size()[1]).to(wav.device)
jitter_index_inc = jitter_index + to_add.unsqueeze(1)
D1 = lc_sparse.size()[1]
lc_jitter = torch.take(lc_sparse,
jitter_index_inc.unsqueeze(1).expand(-1, D1, -1))
lc_conv = self.lc_conv(lc_jitter)
lc_dense = self.lc_upsample(lc_conv)
D2 = lc_dense.size()[1]
lc_dense_trim = lc_dense[:,:,self.trim_ups_out[0]:self.trim_ups_out[1]]
cond = self.cond(lc_dense_trim, speaker_inds)
# "The conditioning signal was passed separately into each layer" - p 5 pp 1.
# Oddly, they claim the global signal is just passed in as one-hot vectors.
# But, this means wavenet's parameters would have N_s baked in, and wouldn't
# be able to operate with a new speaker ID.
wav_onehot = F.one_hot(wav.long(), self.n_quant).permute(0,2,1).float()
wav_onehot = wav_onehot[:,:,self.wav_cond_offset[0]:self.wav_cond_offset[1]]
sig = self.base_layer(wav_onehot)
skp_sum = torch.zeros(wav_onehot.shape[0], self.n_skp,
self.n_win_batch, device=wav_onehot.device)
for layer in self.conv_layers:
sig, skp = layer(sig, cond)
skp_sum += skp
post1 = self.post1(self.relu(skp_sum))
quant = self.post2(self.relu(post1))
# we only need this for inference time
# logits = self.logsoftmax(quant)
return quant
def forward_test(self, wav, lc_sparse, speaker_inds, jitter_index):
"""
Generate n_rep samples, using lc_sparse and speaker_inds for local and global
conditioning.
wav_onehot: full length wav vector
lc_sparse: full length local conditioning vector derived from full
wav_onehot
"""
n_rep = torch.tensor(self.n_replicas, device=wav.device)
wav_onehot = F.one_hot(wav.long(), self.n_quant).permute(0,2,1).float()
wav_onehot = wav_onehot[:,:,self.wav_cond_offset[0]:]
lc_sparse = lc_sparse.repeat(n_rep, 1, 1)
jitter_index = jitter_index.repeat(n_rep, 1)
speaker_inds = speaker_inds.repeat(n_rep)
# precalculate conditioning vector for all timesteps
D1 = lc_sparse.size()[1]
lc_jitter = torch.take(lc_sparse,
jitter_index.unsqueeze(1).expand(-1, D1, -1))
lc_conv = self.lc_conv(lc_jitter)
lc_dense = self.lc_upsample(lc_conv)
cond = self.cond(lc_dense, speaker_inds)
n_ts = cond.size()[2]
chunk_size = 1000
# first slot is to report the original
wav_onehot = wav_onehot.repeat(n_rep + 1, 1, 1)
n_layers = self.n_blocks * self.n_block_layers
# sig[0] is the output of the base_layer
# sig[i] is the output of the conv_layer[i-1]
# there is no sig to hold the output of conv_layer[-1]
# instead, it is directed to sig[n_layers-1]
# wav_irng slices wav_onehot when used as input, and
# we derive the single position output from wav_irng
irng = wav_onehot.new_empty(n_layers, 2, dtype=torch.long)
# orng[l] is the output range of layer l, which populates sig[l]
# except that orng[-2] and orng[-1] both populate sig[-1]
# because
orng = wav_onehot.new_empty(n_layers + 1, 2, dtype=torch.long)
cond_rng = wav_onehot.new_empty(2, dtype=torch.long)
# input range for the wav_onehot vector
wav_ir = wav_onehot.new_empty(2, dtype=torch.long)
skp_sum = torch.zeros(n_rep, self.n_skp, 1,
device=wav_onehot.device)
# forward-most index element in wave input
cur_pos = torch.tensor([self.base_global_rf], dtype=torch.long,
device=wav_onehot.device)
# end_pos = torch.tensor([self.base_global_rf + 30000], dtype=torch.long,
# device=wav_onehot.device)
end_pos = torch.tensor([n_ts], dtype=torch.long,
device=wav_onehot.device)
wav_ir[0] = cur_pos[0] - self.base_global_rf
wav_ir[1] = cur_pos[0]
sig = []
i = 0
for l in self.conv_layers:
# print(n_rep, self.n_res, l.global_rf, chunk_size, 1)
sig.append(torch.empty(n_rep, self.n_res, l.global_rf + chunk_size -
1, device=wav_onehot.device))
irng[i,0] = 0
irng[i,1] = l.global_rf
orng[i,0] = 0
orng[i,1] = l.global_rf
i += 1
orng[-1,0] = 0
orng[-1,1] = 1
cond_rng[0] = wav_ir[0]
cond_rng[1] = wav_ir[1]
report_interval = torch.tensor(1000, dtype=torch.long,
device=wav_onehot.device)
zero = torch.tensor(0, dtype=torch.long, device=wav_onehot.device)
self.set_full()
while not torch.equal(cur_pos, end_pos):
chunk_size = min(chunk_size, end_pos[0] - cur_pos[0])
for _ in range(chunk_size):
# base_layer is a 1x1 convolution, so uses irng[0]
# for both input and output
ir = irng[0]
sig[0][:,:,ir[0]:ir[1]] = \
self.base_layer(wav_onehot[1:,:,wav_ir[0]:wav_ir[1]])
skp_sum[...] = 0
li = 0
for layer in self.conv_layers:
# last iteration reassigns to same sig slot (unused)
li_out = min(li+1, n_layers - 1)
p, q = irng[li], orng[li+1]
sig[li_out][:,:,q[0]:q[1]], skp = \
layer(sig[li][:,:,p[0]:p[1]], cond[:,:,cond_rng[0]:cond_rng[1]])
skp_sum += skp
li += 1
post1 = self.post1(self.relu(skp_sum))
quant = self.post2(self.relu(post1)).squeeze(2)
probs = F.softmax(quant, dim=-1)
indices = torch.multinomial(probs, 1, True)
wav_onehot[1:,:,wav_ir[1]] = F.one_hot(indices,
self.n_quant).squeeze(1).float()
# print('{}: {} - {}'.format(post_val - pre_val, pre_val,
# post_val))
if torch.equal(irng[0,0], zero):
# finished initialization, now incremental mode
# we only really need 1 new element, but computing two
# nicely fits with sig[0]
self.set_incremental()
cond_rng[0] = cond_rng[1] - 1
# wav_ir[0] = wav_ir[1] - local_rf[0]
li = 0
for l in self.conv_layers:
# hack because we can't index self.conv_layers
if li == 0:
wav_ir[0] = wav_ir[1] - l.local_rf
irng[li,0] = l.global_rf - l.local_rf
irng[li,1] = l.global_rf
orng[li,0] = l.global_rf - 1
orng[li,1] = l.global_rf
li += 1
orng += 1
irng += 1
wav_ir += 1
cond_rng += 1
cur_pos += 1
if torch.equal(torch.fmod(wav_ir[1], report_interval), zero):
# if wav_ir[1] % 1000 == 0:
print('On timestep {} out of {}'.format(wav_ir[1].item(),
end_pos[0].item()))
# reset windows
for i in range(n_layers):
sig[i][:,:,:-chunk_size] = sig[i][:,:,chunk_size:]
irng -= chunk_size
orng -= chunk_size
# convert to value format
wav = wav_onehot.argmax(1).to(wav_onehot.dtype)
# print(wav[:,end_pos:end_pos + 10000])
print('synth range std: {}, baseline std: {}'.format(
wav[:,:end_pos[0]].std(), wav[:,end_pos[0]:].std()
))
return wav
# return wav[0,...], wav[1:,...]
class RecLoss(nn.Module):
def __init__(self):
super(RecLoss, self).__init__()
self.logsoftmax = nn.LogSoftmax(1) # input is (B, Q, N)
def forward(self, quant_pred, target_wav):
log_pred = self.logsoftmax(quant_pred)
target_wav_gather = target_wav.long().unsqueeze(1)
log_pred_target = torch.gather(log_pred, 1, target_wav_gather)
rec_loss = - log_pred_target.mean()
self.metrics = {
'rec': rec_loss
}
return rec_loss