-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathutil.py
250 lines (205 loc) · 7.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from hashlib import md5
from pickle import dumps
import numpy as np
import torch
from typing import Tuple
def digest(obj):
return md5(dumps(obj)).hexdigest()
def tensor_digest(tensors):
try:
it = iter(tensors)
except TypeError:
tensors = list(tensors)
vals = list(map(lambda t: t.flatten().detach().cpu().numpy().tolist(), tensors))
return digest(vals)
def _validate_checkpoint_info(ckpt_dir, ckpt_file_template):
# Unfortunately, Python doesn't provide a way to hold an open directory
# handle, so we just check whether the directory path exists and is
# writable during this call.
import os
if not os.access(ckpt_dir, os.R_OK|os.W_OK):
raise ValueError('Cannot read and write checkpoint directory {}'.format(ckpt_dir))
# test if ckpt_file_template is valid
try:
test_file = ckpt_file_template.replace('%', '1000')
except IndexError:
test_file = ''
# '1000' is 3 longer than '%'
if len(test_file) != len(ckpt_file_template) + 3:
raise ValueError('Checkpoint template "{}" ill-formed. '
'(should have exactly one "%")'.format(ckpt_file_template))
try:
test_path = '{}/{}'.format(ckpt_dir, test_file)
if not os.access(test_path, os.R_OK):
fp = open(test_path, 'w')
fp.close()
os.remove(fp.name)
except IOError:
raise ValueError('Cannot create a test checkpoint file {}'.format(test_path))
class CheckpointPath(object):
def __init__(self, path_template, validate=True):
import os.path
_dir = os.path.dirname(path_template)
_base = os.path.basename(path_template)
if _dir == '' or _base == '':
raise ValueError('path_template "{}" does not contain both '
'directory and file'.format(path_template))
self.dir = _dir.rstrip('/')
self.file_template = _base
if validate:
_validate_checkpoint_info(self.dir, self.file_template)
def path(self, step):
return '{}/{}'.format(self.dir, self.file_template.replace('%', str(step)))
def mu_encode_np(x, n_quanta):
'''mu-law encode and quantize'''
mu = n_quanta - 1
amp = np.sign(x) * np.log1p(mu * np.abs(x)) / np.log1p(mu)
quant = (amp + 1) * 0.5 * mu + 0.5
return quant.astype(np.int32)
def mu_decode_np(quant, n_quanta):
'''accept an integer mu-law encoded quant, and convert
it back to the pre-encoded value'''
mu = n_quanta - 1
qf = quant.astype(np.float32)
inv_mu = 1.0 / mu
a = (2 * qf - 1) * inv_mu - 1
x = np.sign(a) * ((1 + mu)**np.fabs(a) - 1) * inv_mu
return x
def mu_encode_torch(x, n_quanta):
'''mu-law encode and quantize'''
mu = torch.tensor(float(n_quanta - 1), device=x.device)
amp = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
quant = (amp + 1) * 0.5 * mu + 0.5
return quant.round_().to(dtype=torch.long)
def mu_decode_torch(quant, n_quanta):
'''accept an integer mu-law encoded quant, and convert
it back to the pre-encoded value'''
mu = torch.tensor(float(n_quanta - 1), device=quant.device)
qf = quant.to(dtype=torch.float32)
inv_mu = mu.reciprocal()
a = (2 * qf - 1) * inv_mu - 1
x = torch.sign(a) * ((1 + mu)**torch.abs(a) - 1) * inv_mu
return x
def entropy(ten, do_norm=True):
if do_norm:
s = ten.sum()
n = ten / s
else:
n = ten
lv = torch.where(n == 0, n.new_zeros(n.size()), torch.log2(n))
return - (n * lv).sum()
def int_hist(ten, ignore_val=None, accu=None):
"""Return a histogram of the integral-valued tensor"""
if ten.is_floating_point():
raise RuntimeError('int_hist only works for non-floating-point tensors')
if ignore_val is not None:
mask = ten.ne(ignore_val)
ten = ten.masked_select(mask)
ne = max(ten.max() + 1, ten.nelement())
o = ten.new_ones(ne, dtype=torch.float)
if accu is None:
z = o.new_zeros(ne)
else:
z = accu
z.scatter_add_(0, ten.flatten(), o)
return z
"""
torch.index_select(input, d, query), expressed as SQL:
d: integer in (1..k)
input: i_(1..k), ival
query: q_1, qval
SELECT (i_1..i_k q_1/i_d), ival
from input, query
where i_d = qval
notation: (1..k q/d) means "values 1 through k, replacing d with q"
"""
"""
torch.gather(input, d, query), expressed as SQL:
d: integer in (1..k)
input: i_(1..k), ival
query: q_(1..k), qval
NOTE: max(q_j) = max(i_j) for all j != d
SELECT (i_1 .. i_k qval/i_d), ival
from index, query
where i_d = qval
The output has the same shape as query.
All values of the output are values from input.
It's like a multi-dimensional version of torch.take.
"""
# !!! this doesn't generalize to other dimensions anymore
def gather_md_jit(input, dim: int, perm: Tuple[int, int], query):
"""
torchscript jit version
"""
k = input.dim()
if dim < 0 or dim >= k:
raise ValueError('dim {} must be in [0, {})'.format(dim, k))
# Q = prod(q_(1..m))
# x: (i_1..i_k Q/i_d)
x = torch.index_select(input, dim, query.flatten())
# print('type of dim is: ', type(dim))
# x_perm: (i_1..i_k / q) + Q. In other words, move dimension Q to the end
# t = list(range(dim)) + list(range(dim+1, k)) + [dim]
# t = (0,1)
# t = tuple(range(dim)) + tuple(range(dim+1, k)) + (dim,)
# x_perm = x.permute(*t)
# !!! original
# t = tuple(range(dim)) + tuple(range(dim+1, k)) + (dim,)
# print('permutation:', *perm)
x_perm = x.permute(*perm)
# for example, expand (i_1, i_2, i_3, Q) to (i_1, i_2, i_3, q_1, q_2, q_3)
out_size = input.size()[:dim] + input.size()[dim+1:] + query.size()
return x_perm.reshape(out_size)
def gather_md(input, dim, query):
'''
You can view a K-dimensional tensor entry: input[i1,i2,...,ik] = cell_value
as a SQL table record with fields : i1, i2, ..., ik, cell_value
Then, this function logically executes the following query:
d: integer in (1..k)
input: i_1, i_2, ..., i_k, ival
query: q_1, q_2, ..., q_m, qval
SELECT i_(1..k / d), q_(1..m), ival
from input, query
where i_d = qval
(1..k / d) means "values 1 through k, excluding d"
It is the same as torch.index_select, except that 'query' may have more
than one dimension, and its dimension(s) are placed at the end of the
result tensor rather than replacing input dimension 'dim'
'''
k = input.dim()
tup = tuple(range(dim)) + tuple(range(dim+1, k)) + (dim,)
return gather_md_scriptable(input, dim, tup, query)
def greatest_lower_bound(a, q):
'''return largest i such that a[i] <= q. assume a is sorted.
if q < a[0], return -1'''
l, u = 0, len(a) - 1
while (l < u):
m = u - (u - l) // 2
if a[m] <= q:
l = m
else:
u = m - 1
return l or -1 + (a[l] <= q)
def sigfig(f, s, m):
"""format a floating point value in fixed point notation but
with a fixed number of significant figures.
Examples with nsigfig=3, maxwidth=
Rule is:
1. If f < 1.0e-s, render with {:.ne} where n = s-1
2. If f > 1.0e+l, render with {:.ne} where n = s-1
3. Otherwise, render with {:0.ge} where g is:
s if f in (0.1,
f {:2e} final
1.23456e-04 => 1.23e-04 => unchanged
1.23456e-03 => 1.23e-03 => unchanged
1.23456e-02 => 1.23e-02 => unchanged
1.23456e-01 => 1.23e-01 => 0.123
1.23456e+00 => 1.23e+00 => 1.230
1.23456e+01 => 1.23e+01 => 12.30
1.23456e+02 => 1.23e+02 => 123.0
1.23456e+03 => 1.23e+03 => 1230.
1.23456e+04 => 1.23e+04 => 12300
1.23456e+05 => 1.23e+05 => unchanged
1.23456e+06 => 1.23e+06 => unchanged
"""
pass