-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathgrad_analysis.py
86 lines (69 loc) · 2.83 KB
/
grad_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
# Functions for analyzing the gradients during training
# Approach: At a given moment during training, calculate the gradients on each
# weight for N minibatches of data. Then, calculate the standard deviation on
# each weight over the N minibatches. Finally, report the average standard
# deviation, and perhaps quantiles, over the weights in a given layer
# This will inform whether the batch size is too small and thus too noisy
# for a given learning rate
# We need to have a function for copying the gradients after a call to
# backward, into some larger vector with an extra dimension.
# Due to memory constraints, we cannot store all N sets of gradients for all
# parameters, nor is it efficient to store one at a time and re-run the
# forward/backward pass for each parameter set. Instead, we use an incremental
# formula for the variance, from
# http://datagenetics.com/blog/november22017/index.html:
# mu_0 = x_0, S_0 = 0
# mu_n = mu_(n-1) + (x_n - mu_(n-1)) / n
# S_n = S_(n-1) + (x_n - mu_(n-1)) (x_n - mu_n)
# sigma_n = sqrt(S_n / n)
def mu_s_incr(x_cur, n, mu_pre, s_pre):
"""
Calculate current mu and s from previous values using incremental formula.
All three arguments are assumed to have the same shape and are computed
elementwise
"""
if n == 0:
return x_cur, x_cur.new_zeros(x_cur.shape)
assert x_cur.shape == mu_pre.shape
assert x_cur.shape == s_pre.shape
mu_cur = mu_pre + (x_cur - mu_pre) / n
s_cur = s_pre + (x_cur - mu_pre) * (x_cur - mu_cur)
return mu_cur, s_cur
def quantiles(x, quantiles):
"""
Return the quantiles of x. quantiles are given in [0, 1]
"""
qv = [0] * len(quantiles)
for i, q in enumerate(quantiles):
k = 1 + round(float(q) * (x.numel() - 1))
qv[i] = x.view(-1).kthvalue(k)[0].item()
return qv
def grad_stats(model, update_model_closure, n_batch, report_quantiles):
"""
Run n_batch'es of data through the model, accumulating an incremental
mean and sd of the gradients. Report the quantiles of these sigma values
per parameter.
model is a torch.Module
update_model_closure should fetch a new batch of data, then run
forward()/backward() to update the gradients
"""
mu = {}
s = {}
update_model_closure()
for name, par in model.named_parameters():
if par.grad is None:
continue
mu[name] = None
s[name] = None
for b in range(n_batch):
update_model_closure()
for name, par in model.named_parameters():
if par.grad is None:
continue
mu[name], s[name] = mu_s_incr(par.grad, b, mu[name], s[name])
quantile_values = {}
for name, sval in s.items():
sig = (sval / n_batch).sqrt().cpu()
quantile_values[name] = quantiles(sig, report_quantiles)
return quantile_values