diff --git a/tests/test_infer/test_ops/cuda/kernel_utils.py b/tests/test_infer/test_ops/cuda/kernel_utils.py deleted file mode 100644 index 22167ded02be..000000000000 --- a/tests/test_infer/test_ops/cuda/kernel_utils.py +++ /dev/null @@ -1,214 +0,0 @@ -from typing import Tuple - -import torch -from torch.nn import functional as F - - -# This function is adapted from src/transformers/models/llama/modeling_llama.py -# in huggingface transformers repository -# https://github.com/huggingface/transformers/blob/3b7675b2b844b02d4821b827871a21ad16dd446c/src/transformers/models/llama/modeling_llama.py#L273 -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). - The hidden states go from (bsz, num_key_value_heads, seq_len, head_dim) to (bsz, num_attention_heads, seq_len, head_dim) - """ - if n_rep == 1: - return hidden_states - bsz, num_key_value_heads, seq_len, head_dim = hidden_states.shape - hidden_states = hidden_states[:, :, None, :, :].expand(bsz, num_key_value_heads, n_rep, seq_len, head_dim) - return hidden_states.reshape(bsz, num_key_value_heads * n_rep, seq_len, head_dim) - - -def prepare_padding_mask(kv_lengths: torch.Tensor, bsz: int, kv_seq_len: int, device="cuda"): - padding_mask = torch.zeros((bsz, 1, 1, kv_seq_len), dtype=torch.float32, device=device) - for i in range(bsz): - cur_seq_len = kv_lengths[i].item() - assert cur_seq_len <= kv_seq_len - padding_mask[i, :, :, : kv_seq_len - cur_seq_len] = float("-inf") - return padding_mask - - -# Attention calculation adapted from HuggingFace transformers repository -# src/transformers/models/llama/modeling_llama.py -# https://github.com/huggingface/transformers/blob/633215ba58fe5114d8c8d32e415a04600e010701/src/transformers/models/llama/modeling_llama.py#L350 -def torch_attn_ref( - q: torch.Tensor, # [bsz, num_heads, q_len, head_dim] - k: torch.Tensor, # [bsz, num_heads, kv_seq_len, head_dim] - v: torch.Tensor, # [bsz, num_heads, kv_seq_len, head_dim] - attention_mask: torch.Tensor, # [bsz, 1, seq_len, kv_seq_len] - bsz: int, - seq_len: int, - kv_seq_len: int, - num_heads: int, - num_kv_heads: int, - head_dim: int, -) -> torch.Tensor: - assert q.shape[-1] == k.shape[-1] == v.shape[-1] == head_dim - - # repeat kv for GQA and MQA - # k/v won't change if kv_group_num is 1 - assert num_heads % num_kv_heads == 0, "Number of heads is not multiple of kv heads" - kv_group_num = num_heads // num_kv_heads - k = repeat_kv(k, kv_group_num) - v = repeat_kv(v, kv_group_num) - - qk = torch.matmul(q, k.transpose(2, 3)) - attn_scores = qk / (head_dim**0.5) - assert attn_scores.shape == (bsz, num_heads, seq_len, kv_seq_len), "Invalid shape of attention scores" - # for left-side padding - if attention_mask.size() != (bsz, 1, seq_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, seq_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - - attn_scores = attn_scores + attention_mask - attn_weights = F.softmax(attn_scores.to(dtype=torch.float32), dim=-1).to(dtype=q.dtype) - out = torch.matmul(attn_weights, v) - if out.size() != (bsz, num_heads, seq_len, head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, num_heads, seq_len, head_dim)}, but is" f" {out.size()}" - ) - out = out.transpose(1, 2).contiguous() - out = out.squeeze(1) - return out - - -def mock_alloc_block_table_and_kvcache( - k: torch.Tensor, - v: torch.Tensor, - k_cache: torch.Tensor, - v_cache: torch.Tensor, - context_lengths: torch.Tensor, - num_seqs: int, - max_num_blocks_per_seq: int, - block_size: int, -) -> torch.Tensor: - """Allocate block tables based on provided context lengths; and copy KV to blocked KV Cache.""" - block_id = 0 - block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32) - num_tokens_processed = 0 - for i, seq_len in enumerate(context_lengths.tolist()): - right_bound = (seq_len + block_size - 1) // block_size # open bound - block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32) - # Manually fill kv caches by copying from k and v - for i in range(right_bound): - if i == right_bound - 1: - allocated_locs = seq_len % block_size or block_size - else: - allocated_locs = block_size - k_block = k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0) - v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0) - k_cache[block_id, :, :, :allocated_locs] = k_block - v_cache[block_id, :, :, :allocated_locs] = v_block - - num_tokens_processed += allocated_locs - block_id += 1 - - return block_tables - - -def mock_alloc_block_table_and_kvcache_v2( - k: torch.Tensor, - v: torch.Tensor, - k_cache: torch.Tensor, - v_cache: torch.Tensor, - context_lengths: torch.Tensor, - num_seqs: int, - max_num_blocks_per_seq: int, - block_size: int, -) -> torch.Tensor: - """Allocate block tables based on provided context lengths; and copy KV to blocked KV Cache.""" - block_id = 0 - block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32) - num_tokens_processed = 0 - for i, seq_len in enumerate(context_lengths.tolist()): - right_bound = (seq_len + block_size - 1) // block_size # open bound - block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32) - # Manually fill kv caches by copying from k and v - for i in range(right_bound): - if i == right_bound - 1: - allocated_locs = seq_len % block_size or block_size - else: - allocated_locs = block_size - k_block = k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 0, 2) - v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 0, 2) - k_cache[block_id, :, :allocated_locs, :] = k_block - v_cache[block_id, :, :allocated_locs, :] = v_block - - num_tokens_processed += allocated_locs - block_id += 1 - - return block_tables - - -def mock_alloc_single_token(block_tables: torch.Tensor, context_lengths: torch.Tensor, block_size: int) -> None: - # Allocate 1 token on the block table for each seqs in block tables. - # It won't change provided context_lengths. - # Consider max_block_id as the last physical block allocated - # NOTE It assumes all the blocks preceding this block have been allocated - max_block_id = torch.max(block_tables).item() - # the indices on each block table representing the cache block to be allocated one more token - alloc_local_block_indices = context_lengths // block_size - # offsets of the token to be allocated on the target block (for each seq) - alloc_block_offsets = context_lengths % block_size - - require_new_block = alloc_block_offsets == 0 - new_block_ids = torch.arange( - max_block_id + 1, - max_block_id + 1 + require_new_block.sum(), - dtype=block_tables.dtype, - device=block_tables.device, - ) - - if new_block_ids.numel(): - new_block_alloc_local_indices = alloc_local_block_indices[require_new_block] - block_tables[require_new_block, new_block_alloc_local_indices] = new_block_ids - - -def generate_caches_and_block_tables( - k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=torch.float16, device="cuda" -) -> Tuple[torch.Tensor, ...]: - # Mock generation of k/v blocked caches and block tables from providied kv unpad and seq lengths - # k_unpad/v_unpad [num_total_tokens, num_kv_heads, head_dim] - _, num_kv_heads, head_dim = k_unpad.shape - cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_dim, block_size) - k_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device) - v_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device) - # Mock allocation on block tables as well as blocked kv caches - block_tables = mock_alloc_block_table_and_kvcache( - k_unpad, v_unpad, k_cache, v_cache, kv_lengths, bsz, max_num_blocks_per_seq, block_size - ) - return k_cache, v_cache, block_tables - - -def generate_caches_and_block_tables_v2( - k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=torch.float16, device="cuda" -) -> Tuple[torch.Tensor, ...]: - # Mock generation of k/v blocked caches and block tables from providied kv unpad and seq lengths - # k_unpad/v_unpad [num_total_tokens, num_kv_heads, head_dim] - _, num_kv_heads, head_dim = k_unpad.shape - cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim) - k_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device) - v_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device) - # Mock allocation on block tables as well as blocked kv caches - block_tables = mock_alloc_block_table_and_kvcache_v2( - k_unpad, v_unpad, k_cache, v_cache, kv_lengths, bsz, max_num_blocks_per_seq, block_size - ) - return k_cache, v_cache, block_tables - - -def convert_kv_unpad_to_padded( - k_unpad: torch.Tensor, kv_seq_lengths: torch.Tensor, bsz: int, max_seq_len: int -) -> torch.Tensor: - # Rebuild (batched) k/v with padding to be used by torch attention - # input k_unpad/v_unpad [num_total_tokens, num_kv_heads, head_dim] - # returns k/v padded [bsz, num_kv_heads, max_seq_len, head_dim] - _, num_kv_heads, head_dim = k_unpad.shape - k_torch = torch.zeros((bsz, max_seq_len, num_kv_heads, head_dim), dtype=k_unpad.dtype, device=k_unpad.device) - prev_len_sum = 0 - for i, seq_len in enumerate(kv_seq_lengths.tolist()): - # left-side padding - k_torch[i, -seq_len:, :, :] = k_unpad[prev_len_sum : prev_len_sum + seq_len] - prev_len_sum += seq_len - k_torch = k_torch.transpose(1, 2) - return k_torch diff --git a/tests/test_infer/test_ops/cuda/test_kv_cache_memcpy.py b/tests/test_infer/test_ops/cuda/test_kv_cache_memcpy.py index db22a065cacb..b705f1631f28 100644 --- a/tests/test_infer/test_ops/cuda/test_kv_cache_memcpy.py +++ b/tests/test_infer/test_ops/cuda/test_kv_cache_memcpy.py @@ -1,12 +1,12 @@ import pytest import torch -from kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token from packaging import version from colossalai.inference.modeling.layers.attention import copy_to_cache from colossalai.kernel.kernel_loader import InferenceOpsLoader from colossalai.kernel.triton import copy_kv_to_blocked_cache from colossalai.utils import get_current_device +from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token try: import triton # noqa diff --git a/tests/test_infer/test_ops/triton/test_kvcache_copy.py b/tests/test_infer/test_ops/triton/test_kvcache_copy.py index 47fc730af129..53475270e867 100644 --- a/tests/test_infer/test_ops/triton/test_kvcache_copy.py +++ b/tests/test_infer/test_ops/triton/test_kvcache_copy.py @@ -1,11 +1,11 @@ import pytest import torch -from kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token from packaging import version from colossalai.inference.modeling.layers.attention import copy_to_cache from colossalai.kernel.triton import copy_kv_to_blocked_cache from colossalai.utils import get_current_device +from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token try: import triton # noqa