-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathapp_gradio.py
469 lines (415 loc) · 17.6 KB
/
app_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import cv2
import torch
import gradio as gr
import torchvision
import warnings
import numpy as np
from PIL import Image, ImageSequence
from moviepy.editor import VideoFileClip
import imageio
from diffusers import (
TextToVideoSDPipeline,
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet3DConditionModel,
)
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers.utils import export_to_video
from typing import List
from text2vid_modded import TextToVideoSDPipelineModded
from invert_utils import ddim_inversion as dd_inversion
from gifs_filter import filter
import subprocess
def load_frames(image: Image, mode='RGBA'):
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
# def run_setup():
# try:
# # Step 1: Install Git LFS
# subprocess.run(["git", "lfs", "install"], check=True)
# # Step 2: Clone the repository
# repo_url = "https://huggingface.co/Hmrishav/t2v_sketch-lora"
# subprocess.run(["git", "clone", repo_url], check=True)
# # Step 3: Move the checkpoint file
# source = "t2v_sketch-lora/checkpoint-2500"
# destination = "./checkpoint-2500/"
# os.rename(source, destination)
# print("Setup completed successfully!")
# except subprocess.CalledProcessError as e:
# print(f"Error during setup: {e}")
# except FileNotFoundError as e:
# print(f"File operation error: {e}")
# except Exception as e:
# print(f"Unexpected error: {e}")
# # Automatically run setup during app initialization
# run_setup()
def save_gif(frames, path):
imageio.mimsave(
path,
[frame.astype(np.uint8) for frame in frames],
format="GIF",
duration=1 / 10,
loop=0 # 0 means infinite loop
)
def load_image(imgname, target_size=None):
pil_img = Image.open(imgname).convert('RGB')
if target_size:
if isinstance(target_size, int):
target_size = (target_size, target_size)
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0)
def prepare_latents(pipe, x_aug):
with torch.cuda.amp.autocast():
batch_size, num_frames, channels, height, width = x_aug.shape
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
latents = pipe.vae.encode(x_aug).latent_dist.sample()
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
latents = latents.permute(0, 2, 1, 3, 4)
return pipe.vae.config.scaling_factor * latents
@torch.no_grad()
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
input_img = torch.cat(input_img, dim=1)
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
inv.set_timesteps(25)
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
return torch.mean(id_latents, dim=2, keepdim=True)
def load_primary_models(pretrained_model_path):
return (
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
)
def initialize_pipeline(model: str, device: str = "cuda"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
vae=vae.to(device=device, dtype=torch.bfloat16),
unet=unet.to(device=device, dtype=torch.bfloat16),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe, pipe.scheduler
# Initialize the models
LORA_CHECKPOINT = "checkpoint-2500"
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
pipe = TextToVideoSDPipelineModded.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=pipe_inversion.scheduler,
tokenizer=pipe_inversion.tokenizer,
text_encoder=pipe_inversion.text_encoder,
vae=pipe_inversion.vae,
unet=pipe_inversion.unet,
).to(device)
@torch.no_grad()
def process_video(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
pipe_inversion.to(device)
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
video_frames = pipe(
prompt=caption,
negative_prompt="",
num_frames=num_frames,
num_inference_steps=25,
inv_latents=latents,
guidance_scale=9,
generator=generator,
lambda_=lambda_,
).frames
gifs = []
for seed in range(num_seeds):
vid_name = f"{exp_dir}/mp4_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.mp4"
gif_name = f"{exp_dir}/gif_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.gif"
os.makedirs(os.path.dirname(vid_name), exist_ok=True)
os.makedirs(os.path.dirname(gif_name), exist_ok=True)
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
VideoFileClip(vid_name).write_gif(gif_name)
with Image.open(gif_name) as im:
frames = load_frames(im)
frames_collect = np.empty((0, 1024, 1024), int)
for frame in frames:
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
frames_collect = np.append(frames_collect, [frame], axis=0)
save_gif(frames_collect, gif_name)
gifs.append(gif_name)
return gifs
def generate_output(image, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5) -> List[str]:
"""Main function to generate output GIFs"""
exp_dir = "static/app_tmp"
os.makedirs(exp_dir, exist_ok=True)
# Save the input image temporarily
temp_image_path = os.path.join(exp_dir, "temp_input.png")
image.save(temp_image_path)
# Generate the GIFs
generated_gifs = process_video(
num_frames=10,
num_seeds=num_seeds,
generator=None,
exp_dir=exp_dir,
load_name=temp_image_path,
caption=prompt,
lambda_=1 - lambda_value
)
# Apply filtering (assuming filter function is imported)
filtered_gifs = filter(generated_gifs, temp_image_path)
return filtered_gifs
def create_gradio_interface():
with gr.Blocks(css="""
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.example-gallery {
margin: 20px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 8px;
}
.selected-example {
margin: 20px 0;
padding: 20px;
background: #ffffff;
border-radius: 8px;
}
.controls-section {
background: #ffffff;
padding: 20px;
margin: 20px 0;
border-radius: 8px;
}
.output-gallery {
min-height: 500px;
margin: 20px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 8px;
}
.example-item {
border-radius: 8px;
overflow: hidden;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
cursor: pointer;
}
.example-item:hover {
transform: scale(1.05);
}
/* Prevent gallery images from expanding */
.gallery-image {
height: 200px !important;
width: 200px !important;
object-fit: cover !important;
}
.generate-btn {
width: 100%;
margin-top: 1rem;
}
.generate-btn:disabled {
opacity: 0.7;
cursor: not-allowed;
}
""") as demo:
gr.Markdown(
"""
<div align="center" id = "user-content-toc">
<img align="left" width="70" height="70" src="https://github.com/user-attachments/assets/c61cec76-3c4b-42eb-8c65-f07e0166b7d8" alt="">
# [FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations](https://hmrishavbandy.github.io/flipsketch-web/)
## [Hmrishav Bandyopadhyay](https://hmrishavbandy.github.io/) . [Yi-Zhe Song](https://personalpages.surrey.ac.uk/y.song/)
</div>
"""
)
with gr.Tabs() as tabs:
# First tab: Examples (Secure)
with gr.Tab("Examples"):
gr.Markdown("## Step 1 👉 Select a sketch from the gallery of sketches")
examples_dir = "static/examples"
if os.path.exists(examples_dir):
example_images = []
for example in os.listdir(examples_dir):
if example.endswith(('.png', '.jpg', '.jpeg')):
example_path = os.path.join(examples_dir, example)
example_images.append(Image.open(example_path))
example_selection = gr.Gallery(
example_images,
label="Sketch Gallery",
elem_classes="example-gallery",
columns=4,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
interactive=False,
selected_index=None # Don't pre-select any image
)
gr.Markdown("## Step 2 👉 Describe the motion you want to generate")
with gr.Group(elem_classes="selected-example"):
with gr.Row():
selected_example = gr.Image(
type="pil",
label="Selected Sketch",
scale=1,
interactive=False,
show_download_button=False,
height=300 # Fixed height for consistency
)
with gr.Column(scale=2):
example_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the motion...",
lines=3
)
with gr.Row():
example_num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Seeds"
)
example_lambda = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
example_generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
interactive=True,
)
gr.Markdown("## Result 👉 Generated Animations ❤️")
example_gallery = gr.Gallery(
label="Results",
elem_classes="output-gallery",
columns=3,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
object_fit="cover",
preview=False
)
# Second tab: Upload
with gr.Tab("Upload Your Sketch"):
with gr.Group(elem_classes="selected-example"):
with gr.Row():
upload_image = gr.Image(
type="pil",
label="Upload Your Sketch",
scale=1,
height=300, # Fixed height for consistency
show_download_button=False,
sources=["upload"],
)
with gr.Column(scale=2):
upload_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe what you want to generate...",
lines=3
)
with gr.Row():
upload_num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Variations"
)
upload_lambda = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
upload_generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
size="lg",
interactive=True,
)
gr.Markdown("## Result 👉 Generated Animations ❤️")
upload_gallery = gr.Gallery(
label="Results",
elem_classes="output-gallery",
columns=3,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
object_fit="cover",
preview=False
)
# Event handlers
def select_example(evt: gr.SelectData):
prompts = {'sketch1.png': 'The camel walks slowly',
'sketch2.png': 'The wine in the wine glass sways from side to side',
'sketch3.png': 'The squirrel is eating a nut',
'sketch4.png': 'The surfer surfs on the waves',
'sketch5.png': 'A galloping horse',
'sketch6.png': 'The cat walks forward',
'sketch7.png': 'The eagle flies in the sky',
'sketch8.png': 'The flower is blooming slowly',
'sketch9.png': 'The reindeer looks around',
'sketch10.png': 'The cloud floats in the sky',
'sketch11.png': 'The jazz saxophonist performs on stage with a rhythmic sway, his upper body sways subtly to the rhythm of the music.',
'sketch12.png': 'The biker rides on the road',}
if evt.index < len(example_images):
example_img = example_images[evt.index]
prompt_text = prompts.get(os.path.basename(example_img.filename), "")
return [
example_img,
prompt_text
]
return [None, ""]
example_selection.select(
select_example,
None,
[selected_example, example_prompt]
)
example_generate_btn.click(
fn=generate_output,
inputs=[
selected_example,
example_prompt,
example_num_seeds,
example_lambda
],
outputs=example_gallery
)
upload_generate_btn.click(
fn=generate_output,
inputs=[
upload_image,
upload_prompt,
upload_num_seeds,
upload_lambda
],
outputs=upload_gallery
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False
)