-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_fusion.py
174 lines (130 loc) · 5.27 KB
/
train_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
'''
Author: Jinguang Tong
Affliction: Australia National University, DATA61 CSIRO
'''
import torch
import argparse
import datetime
from utils.loading import *
from utils.setup import *
from utils.loss import FusionLoss, NeuralFusionLoss
from torch.utils.data import DataLoader
from torch.optim import RMSprop, Adam
from torch.optim.lr_scheduler import StepLR, ExponentialLR
from modules.pipeline import Pipeline
from tqdm import tqdm
def arg_parse():
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--experiment', type=str, default="experiment/")
args = parser.parse_args()
return vars(args)
def train_fusion(args):
config = load_config_from_yaml(args['config'])
config.TIMESTAMP = datetime.datetime.now().strftime('%y%m%d-%H%M%S')
# get workspace
workspace = get_workspace(config)
# save config before training
workspace.save_config(config)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
config.MODEL.device = device
# get datasets
# get train dataset
train_data_config = get_data_config(config, mode='train')
train_dataset = get_data(config.DATA.dataset, train_data_config)
train_loader = DataLoader(train_dataset, config.TRAINING.train_batch_size, num_workers=1)
# get val dataset
val_data_config = get_data_config(config, mode='val')
val_dataset = get_data(config.DATA.dataset, val_data_config)
val_loader = DataLoader(val_dataset, config.TRAINING.val_batch_size, num_workers=1)
# get database
# get train database
train_database = get_database(train_dataset, config, mode='train')
val_database = get_database(val_dataset, config, mode='val')
# setup pipeline
pipeline = Pipeline(config)
pipeline = pipeline.to(device)
# optimization
criterion = NeuralFusionLoss(config)
# optimizer
optimizer = Adam(
[
{'params': pipeline._fusion_network.parameters()},
{'params': pipeline._translator.parameters()}
],
config.OPTIMIZATION.lr
)
scheduler = ExponentialLR(optimizer=optimizer,
gamma=config.OPTIMIZATION.scheduler.gamma)
# optimizer = RMSprop(
# pipeline._fusion_network.parameters(),
# config.OPTIMIZATION.lr,
# config.OPTIMIZATION.rho,
# config.OPTIMIZATION.eps,
# momentum=config.OPTIMIZATION.momentum,
# weight_decay=config.OPTIMIZATION.weight_decay)
# scheduler = StepLR(optimizer=optimizer,
# step_size=config.OPTIMIZATION.scheduler.step_size,
# gamma=config.OPTIMIZATION.scheduler.gamma)
# define some parameters
n_batches = float(len(train_dataset) / config.TRAINING.train_batch_size)
# evaluation metrics
best_iou = 0.
for epoch in range(0, config.TRAINING.n_epochs):
print('Training on epoch {}/{}'.format(epoch, config.TRAINING.n_epochs))
pipeline.train()
# resetting databases before each epoch starts
train_database.reset()
val_database.reset()
for i, batch in tqdm(enumerate(train_loader), total=len(train_dataset)):
# put all data on GPU
batch = transform.to_device(batch, device)
# fusion pipline
output = pipeline.fuse_training(batch, train_database, device)
loss = criterion(output)
loss.backward()
if config.TRAINING.clipping:
torch.nn.utils.clip_grad_norm_(
pipeline._fusion_network.parameters(), max_norm=1., norm_type=2)
if (i + 1) % config.OPTIMIZATION.accumulation_steps == 0 or i == n_batches - 1:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
# zero out all grads
optimizer.zero_grad()
# train_database.filter(value=3.)
pipeline.translate(train_database, device)
train_eval = train_database.evaluate(mode='train', workspace=workspace)
train_database.save_to_workspace(workspace)
print(train_eval)
pipeline.eval()
# validation step - fusion
for i, batch in tqdm(enumerate(val_loader), total=len(val_dataset)):
# put all data on GPU
batch = transform.to_device(batch, device)
# fusion pipeline
pipeline.fuse(batch, val_database, device)
# val_database.filter(value=3.)
pipeline.translate(val_database, device)
val_eval = val_database.evaluate(mode='val', workspace=workspace)
print(val_eval)
# check if current checkpoint is best
if val_eval['iou'] >= best_iou:
is_best = True
best_iou = val_eval['iou']
workspace.log('found new best model with iou {} at epoch {}'.format(
best_iou, epoch), mode='val')
else:
is_best = False
# save models
val_database.save_to_workspace(workspace)
# save checkpoint
workspace.save_model_state({
'pipeline_state_dict': pipeline.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch},
is_best=is_best)
if __name__ == '__main__':
args = arg_parse()
print(args['config'])
train_fusion(args)