-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
519 lines (425 loc) · 16.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os
import pathlib
import pprint
import SimpleITK as sitk
import numpy as np
import pandas as pd
import torch
import yaml
from matplotlib import pyplot as plt
from medpy.metric import binary
from monai.data import decollate_batch
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AsDiscrete,
Compose,
EnsureType
)
from numpy import logical_and as l_and, logical_not as l_not
from scipy.spatial.distance import directed_hausdorff
from skimage.metrics import structural_similarity as ssim
from torch import distributed as dist
from torch.autograd import Variable
def save_args(args):
"""Save parsed arguments to config file.
"""
config = vars(args).copy()
del config['save_folder']
del config['seg_folder']
config_file = args.save_folder / (args.exp_name + ".yaml")
with open(config_file, "w") as file:
yaml.dump(config, file)
def save_args_1(args):
"""Save parsed arguments to config file.
"""
config = vars(args).copy()
del config['save_folder_1']
del config['seg_folder_1']
config_file = args.save_folder_1 / (args.exp_name + ".yaml")
with open(config_file, "w") as file:
yaml.dump(config, file)
def master_do(func, *args, **kwargs):
"""Help calling function only on the rank0 process id ddp"""
try:
rank = dist.get_rank()
if rank == 0:
return func(*args, **kwargs)
except AssertionError:
# not in DDP setting, just do as usual
func(*args, **kwargs)
def save_checkpoint(state: dict, save_folder: pathlib.Path):
"""Save Training state."""
best_filename = f'{str(save_folder)}/model_best.pth.tar'
torch.save(state, best_filename)
class AverageMeter(object):
"""Computes and stores the average and current value."""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
@staticmethod
def _get_batch_fmtstr(num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
# TODO remove dependency to args
def reload_ckpt(args, model, optimizer, scheduler):
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
raise ValueError("=> no checkpoint found at '{}'".format(args.resume))
def reload_ckpt_bis(ckpt, model, device, optimizer=None):
if os.path.isfile(ckpt):
print(f"=> loading checkpoint {ckpt}")
try:
checkpoint = torch.load(ckpt, map_location=device)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
if optimizer:
optimizer.load_state_dict(checkpoint['optimizer'])
print(f"=> loaded checkpoint '{ckpt}' (epoch {start_epoch})")
return start_epoch
except RuntimeError:
# TO account for checkpoint from Alex nets
print("Loading model Alex style")
model.load_state_dict(torch.load(ckpt, map_location='cpu'))
else:
raise ValueError(f"=> no checkpoint found at '{ckpt}'")
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def hd(pred, gt):
if pred.sum() > 0 and gt.sum() > 0:
hd95 = binary.hd95(pred, gt)
return hd95
else:
return 0
def dice_cal(pred, label):
if (pred.sum() + label.sum()) == 0:
return 1
else:
return 2. * np.logical_and(pred, label).sum() / (pred.sum() + label.sum())
def calculate_metrics(preds, targets, patient, tta=False):
"""
Parameters
----------
preds:
torch tensor of size 1*C*Z*Y*X
targets:
torch tensor of same shape
patient :
The patient ID
tta:
is tta performed for this run
"""
pp = pprint.PrettyPrinter(indent=4)
assert preds.shape == targets.shape, "Preds and targets do not have the same size"
labels = ["ET", "TC", "WT"]
metrics_list = []
for i, label in enumerate(labels):
metrics = dict(
patient_id=patient,
label=label,
tta=tta,
)
if np.sum(targets[i]) == 0:
print(f"{label} not present for {patient}")
sens = np.nan
#dice = 1 if np.sum(preds[i]) == 0 else 0
tn = np.sum(l_and(l_not(preds[i]), l_not(targets[i])))
fp = np.sum(l_and(preds[i], l_not(targets[i])))
spec = tn / (tn + fp)
ssim_m = np.nan
else:
tp = np.sum(l_and(preds[i], targets[i]))
tn = np.sum(l_and(l_not(preds[i]), l_not(targets[i])))
fp = np.sum(l_and(preds[i], l_not(targets[i])))
fn = np.sum(l_and(l_not(preds[i]), targets[i]))
sens = tp / (tp + fn)
spec = tn / (tn + fp)
ssim_m = ssim(preds[i], targets[i])
#dice = 2 * tp / (2 * tp + fp + fn)
dice = dice_cal(preds[i], targets[i])
haussdorf_dist = hd(preds[i], targets[i])
metrics[HAUSSDORF] = haussdorf_dist
metrics[DICE] = dice
metrics[SENS] = sens
metrics[SPEC] = spec
metrics[SSIM] = ssim_m
pp.pprint(metrics)
metrics_list.append(metrics)
return metrics_list
def calculate_metrics_monai(preds, targets, patient, tta=False):
"""
Parameters
----------
preds:
torch tensor of size 1*C*Z*Y*X
targets:
torch tensor of same shape
patient :
The patient ID
tta:
is tta performed for this run
"""
pp = pprint.PrettyPrinter(indent=4)
assert preds.shape == targets.shape, "Preds and targets do not have the same size"
labels = ["ET", "TC", "WT"]
metrics_list = []
for i, label in enumerate(labels):
metrics = dict(
patient_id=patient,
label=label,
tta=tta,
)
if np.sum(targets[i]) == 0:
print(f"{label} not present for {patient}")
sens = np.nan
dice = 1 if np.sum(preds[i]) == 0 else 0
tn = np.sum(l_and(l_not(preds[i]), l_not(targets[i])))
fp = np.sum(l_and(preds[i], l_not(targets[i])))
spec = tn / (tn + fp)
haussdorf_dist = np.nan
else:
preds_coords = np.argwhere(preds[i])
targets_coords = np.argwhere(targets[i])
haussdorf_dist = directed_hausdorff(preds_coords, targets_coords)[0]
tp = np.sum(l_and(preds[i], targets[i]))
tn = np.sum(l_and(l_not(preds[i]), l_not(targets[i])))
fp = np.sum(l_and(preds[i], l_not(targets[i])))
fn = np.sum(l_and(l_not(preds[i]), targets[i]))
sens = tp / (tp + fn)
spec = tn / (tn + fp)
dice = 2 * tp / (2 * tp + fp + fn)
metrics[HAUSSDORF] = haussdorf_dist
metrics[DICE] = dice
metrics[SENS] = sens
metrics[SPEC] = spec
pp.pprint(metrics)
metrics_list.append(metrics)
return metrics_list
class WeightSWA(object):
"""
SWA or fastSWA
Taken from https://github.com/benathi/fastswa-semi-sup
"""
def __init__(self, swa_model):
self.num_params = 0
self.swa_model = swa_model # assume that the parameters are to be discarded at the first update
def update(self, student_model):
self.num_params += 1
print("Updating SWA. Current num_params =", self.num_params)
if self.num_params == 1:
print("Loading State Dict")
self.swa_model.load_state_dict(student_model.state_dict())
else:
inv = 1. / float(self.num_params)
for swa_p, src_p in zip(self.swa_model.parameters(), student_model.parameters()):
swa_p.data.add_(-inv * swa_p.data)
swa_p.data.add_(inv * src_p.data)
def reset(self):
self.num_params = 0
def save_metrics(epoch, metrics, writer, current_epoch, teacher=False, save_folder=None):
metrics = list(zip(*metrics))
# print(metrics)
# TODO check if doing it directly to numpy work
metrics = [torch.tensor(dice, device="cpu").numpy() for dice in metrics]
# print(metrics)
labels = ("ET", "TC", "WT")
metrics = {key: value for key, value in zip(labels, metrics)}
# print(metrics)
fig, ax = plt.subplots()
ax.set_title("Dice metrics")
ax.boxplot(metrics.values(), labels=metrics.keys())
ax.set_ylim(0, 1)
writer.add_figure(f"val/plot", fig, global_step=epoch)
print(f"Epoch {current_epoch} :{'val' + '_teacher :' if teacher else 'Val :'}",
[f"{key} : {np.nanmean(value)}" for key, value in metrics.items()])
with open(f"{save_folder}/val{'_teacher' if teacher else ''}.txt", mode="a") as f:
print(f"Epoch {current_epoch} :{'val' + '_teacher :' if teacher else 'Val :'}",
[f"{key} : {np.nanmean(value)}" for key, value in metrics.items()], file=f)
for key, value in metrics.items():
tag = f"val{'_teacher' if teacher else ''}{''}/{key}_Dice"
writer.add_scalar(tag, np.nanmean(value), global_step=epoch)
dice_metric = DiceMetric(include_background=True, reduction="mean")
dice_metric_batch = DiceMetric(include_background=True, reduction="mean_batch")
post_trans = Compose(
[EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]
)
device = torch.device("cuda:0")
VAL_AMP = True
# define inference method
def inference(input, model):
def _compute(input):
return sliding_window_inference(
inputs=input,
roi_size=(128, 128, 128),
sw_batch_size=1,
predictor=model,
overlap=0.5,
)
if VAL_AMP:
with torch.cuda.amp.autocast():
return _compute(input)
else:
return _compute(input)
def generate_segmentations_monai(data_loader, model, writer_1, args):
device = torch.device("cuda:0")
metrics_list = []
model.eval()
for idx, val_data in enumerate(data_loader):
print(f"Validating case {idx}")
patient_id = val_data["patient_id"][0]
ref_path = val_data["seg_path"][0]
crops_idx = val_data["crop_indexes"]
ref_seg_img = sitk.ReadImage(ref_path)
ref_seg = sitk.GetArrayFromImage(ref_seg_img)
val_inputs, val_labels = (
val_data["image"].to(device),
val_data["label"].to(device),
)
with torch.no_grad():
val_outputs_1 = inference(val_inputs, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs_1)]
segs = torch.zeros((1, 3, ref_seg.shape[0], ref_seg.shape[1], ref_seg.shape[2]))
segs[0, :, slice(*crops_idx[0]), slice(*crops_idx[1]), slice(*crops_idx[2])] = val_outputs[0]
segs = segs[0].numpy() > 0.5
et = segs[0]
net = np.logical_and(segs[1], np.logical_not(et))
ed = np.logical_and(segs[2], np.logical_not(segs[1]))
labelmap = np.zeros(segs[0].shape)
labelmap[et] = 3
labelmap[net] = 2
labelmap[ed] = 1
labelmap = sitk.GetImageFromArray(labelmap)
refmap_et, refmap_tc, refmap_wt = [np.zeros_like(ref_seg) for i in range(3)]
refmap_et = ref_seg == 3
refmap_tc = np.logical_or(refmap_et, ref_seg == 2)
refmap_wt = np.logical_or(refmap_tc, ref_seg == 1)
refmap = np.stack([refmap_et, refmap_tc, refmap_wt])
patient_metric_list = calculate_metrics(segs, refmap, patient_id)
metrics_list.append(patient_metric_list)
labelmap.CopyInformation(ref_seg_img)
print(f"Writing {args.seg_folder_1}/{patient_id}.nii.gz")
sitk.WriteImage(labelmap, f"{args.seg_folder_1}/{patient_id}.nii.gz")
val_metrics = [item for sublist in metrics_list for item in sublist]
df = pd.DataFrame(val_metrics)
overlap = df.boxplot(METRICS[1:], by="label", return_type="axes")
overlap_figure = overlap[0].get_figure()
writer_1.add_figure("benchmark/overlap_measures", overlap_figure)
haussdorf_figure = df.boxplot(METRICS[0], by="label").get_figure()
writer_1.add_figure("benchmark/distance_measure", haussdorf_figure)
grouped_df = df.groupby("label")[METRICS]
summary = grouped_df.mean().to_dict()
for metric, label_values in summary.items():
for label, score in label_values.items():
writer_1.add_scalar(f"benchmark_{metric}/{label}", score)
df.to_csv((args.save_folder_1 / 'results.csv'), index=False)
def generate_segmentations_monai_test(data_loader, model, writer_1, args):
device = torch.device("cuda:0")
metrics_list = []
model.eval()
for idx, val_data in enumerate(data_loader):
print(f"Validating case {idx}")
patient_id = val_data["patient_id"][0]
ref_path = val_data["seg_path"][0]
crops_idx = val_data["crop_indexes"]
ref_seg_img = sitk.ReadImage(ref_path)
ref_seg = sitk.GetArrayFromImage(ref_seg_img)
val_inputs, val_labels = (
val_data["image"].to(device),
val_data["label"].to(device),
)
with torch.no_grad():
val_outputs_1 = inference(val_inputs, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs_1)]
segs = torch.zeros((1, 3, ref_seg.shape[0], ref_seg.shape[1], ref_seg.shape[2]))
segs[0, :, slice(*crops_idx[0]), slice(*crops_idx[1]), slice(*crops_idx[2])] = val_outputs[0]
segs = segs[0].numpy() > 0.5
et = segs[0]
net = np.logical_and(segs[1], np.logical_not(et))
ed = np.logical_and(segs[2], np.logical_not(segs[1]))
labelmap = np.zeros(segs[0].shape)
labelmap[et] = 4
labelmap[net] = 1
labelmap[ed] = 2
labelmap = sitk.GetImageFromArray(labelmap)
labelmap.CopyInformation(ref_seg_img)
print(f"Writing {args.seg_folder_1}/{patient_id}.nii.gz")
sitk.WriteImage(labelmap, f"{args.seg_folder_1}/{patient_id}.nii.gz")
def generate_segmentations_monai_test_r(data_loader, model, writer_1, args):
device = torch.device("cuda:0")
metrics_list = []
model.eval()
for idx, val_data in enumerate(data_loader):
print(f"Validating case {idx}")
patient_id = val_data["patient_id"][0]
ref_path = val_data["seg_path"][0]
crops_idx = val_data["crop_indexes"]
ref_seg_img = sitk.ReadImage(ref_path)
ref_seg = sitk.GetArrayFromImage(ref_seg_img)
val_inputs, val_labels = (
val_data["image"].to(device),
val_data["label"].to(device),
)
xi=1e-6
d = torch.Tensor(val_inputs.size()).normal_()
d = xi * torch.nn.functional.normalize(d, p=2, dim=1)
d = Variable(d.cuda(), requires_grad=True)
with torch.no_grad():
val_outputs_1 = inference(val_inputs + d, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs_1)]
segs = torch.zeros((1, 3, ref_seg.shape[0], ref_seg.shape[1], ref_seg.shape[2]))
segs[0, :, slice(*crops_idx[0]), slice(*crops_idx[1]), slice(*crops_idx[2])] = val_outputs[0]
segs = segs[0].numpy() > 0.5
et = segs[0]
net = np.logical_and(segs[1], np.logical_not(et))
ed = np.logical_and(segs[2], np.logical_not(segs[1]))
labelmap = np.zeros(segs[0].shape)
labelmap[et] = 4
labelmap[net] = 1
labelmap[ed] = 2
labelmap = sitk.GetImageFromArray(labelmap)
labelmap.CopyInformation(ref_seg_img)
print(f"Writing {args.seg_folder_1}/{patient_id}.nii.gz")
sitk.WriteImage(labelmap, f"{args.seg_folder_1}/{patient_id}.nii.gz")
HAUSSDORF = "haussdorf"
DICE = "dice"
SENS = "sens"
SPEC = "spec"
SSIM = "ssim"
METRICS = [HAUSSDORF, DICE, SENS, SPEC, SSIM]