forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ncf_example.py
100 lines (91 loc) · 2.46 KB
/
ncf_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import cornac
from cornac.eval_methods import RatioSplit
from cornac.datasets import amazon_clothing
from cornac.data import Reader
# Load the Amazon Clothing dataset, and binarise ratings using cornac.data.Reader
feedback = amazon_clothing.load_feedback(reader=Reader(bin_threshold=1.0))
# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(
data=feedback,
test_size=0.2,
rating_threshold=1.0,
seed=123,
exclude_unknowns=True,
verbose=True,
)
backend = "tensorflow" # or 'pytorch'
# Instantiate the recommender models to be compared
gmf = cornac.models.GMF(
num_factors=8,
num_epochs=10,
learner="adam",
backend=backend,
batch_size=256,
lr=0.001,
num_neg=50,
seed=123,
)
mlp = cornac.models.MLP(
layers=[64, 32, 16, 8],
act_fn="tanh",
learner="adam",
backend=backend,
num_epochs=10,
batch_size=256,
lr=0.001,
num_neg=50,
seed=123,
)
neumf1 = cornac.models.NeuMF(
num_factors=8,
layers=[64, 32, 16, 8],
act_fn="tanh",
learner="adam",
backend=backend,
num_epochs=10,
batch_size=256,
lr=0.001,
num_neg=50,
seed=123,
)
neumf2 = cornac.models.NeuMF(
name="NeuMF_pretrained",
learner="sgd",
backend=backend,
num_epochs=10,
batch_size=256,
lr=0.001,
num_neg=50,
seed=123,
num_factors=gmf.num_factors,
layers=mlp.layers,
act_fn=mlp.act_fn,
).from_pretrained(gmf, mlp, alpha=0.5)
# Instantiate evaluation metrics
ndcg_50 = cornac.metrics.NDCG(k=50)
rec_50 = cornac.metrics.Recall(k=50)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[
gmf,
mlp,
neumf1,
neumf2,
],
metrics=[ndcg_50, rec_50],
).run()