forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiased_mf.py
71 lines (65 loc) · 1.95 KB
/
biased_mf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Matrix Factorization with biases"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
# Load MovieLens 1M ratings
ml_1m = movielens.load_feedback(variant="1M")
# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(
data=ml_1m, test_size=0.2, exclude_unknowns=False, verbose=True
)
# Instantiate the global average baseline and MF model
global_avg = cornac.models.GlobalAvg()
mf = cornac.models.MF(
k=10,
backend="cpu",
max_iter=25,
learning_rate=0.01,
lambda_reg=0.02,
use_bias=True,
early_stop=True,
verbose=True,
name="MF-cpu",
)
tmf = cornac.models.MF(
k=10,
backend="pytorch",
optimizer="sgd",
max_iter=25,
batch_size=256,
learning_rate=0.01,
lambda_reg=1e-2,
trainable=True,
verbose=True,
name="MF-pytorch",
)
# Instantiate MAE and RMSE for evaluation
mae = cornac.metrics.MAE()
rmse = cornac.metrics.RMSE()
ndcg = cornac.metrics.NDCG(k=10)
recall = cornac.metrics.Recall(k=10)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[
global_avg,
mf,
tmf,
],
metrics=[mae, rmse, ndcg, recall],
user_based=True,
).run()