-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorthogonal_transformer.py
552 lines (443 loc) · 22.8 KB
/
orthogonal_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# --------------------------------------------------------
# Orthogonal Transformer
# Copyright (c) 2022 CASIA
# Licensed under The MIT License [see LICENSE for details]
# Written by Huaibo Huang
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import scipy.io as sio
import torch.nn.functional as F
import math
from functools import partial
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
class LayerNorm2d(nn.Module):
def __init__(self, dim):
super().__init__()
self.norm = nn.LayerNorm(dim, eps=1e-6)
def forward(self, x):
return self.norm(x.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
class LayerNorm1d(nn.Module):
def __init__(self, dim):
super().__init__()
self.norm = nn.LayerNorm(dim, eps=1e-6)
def forward(self, x):
return self.norm(x)
class HouseholderTransform(nn.Module):
def __init__(self, scale=1, transpose=True):
super().__init__()
self.scale = scale
self.transpose = transpose
if scale == 0:
return
self.n_dim = int(4 ** scale)
self.h = self.w = int(2 ** scale)
self.num_householders = self.n_dim
self.u = nn.Parameter(torch.randn(self.num_householders, self.n_dim))
self.I = nn.Parameter(torch.eye(self.n_dim, self.n_dim).unsqueeze(0))
self.I.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {'u'}
def get_weight(self, ):
u = F.normalize(self.u, dim=1)
w = self.I - 2 * u.unsqueeze(-1) @ u.unsqueeze(1)
w = torch.chain_matmul(*[x.squeeze(0) for x in w.chunk(self.num_householders, dim=0)])
return w.reshape(self.n_dim, 1, self.h, self.w)
def forward(self, x, dec, weight=None):
if self.scale == 0:
if dec:
return x.unsqueeze(1), None
else:
return x.flatten(1, 2)
if dec:
b, c, h, w = x.shape
weight = self.get_weight()
output = F.conv2d(x.reshape(b*c, 1, h, w), weight, stride=self.h, padding=0)
output = output.reshape(b, c, output.shape[1], output.shape[2], output.shape[3])
if self.transpose:
output = output.transpose(1,2)
return output, weight
else:
b, n, c, h, w = x.shape
# if weight is None:
# weight = self.get_weight()
if self.transpose:
x = x.transpose(1,2).flatten(0,1) #(b*c,n,h,w)
output = F.conv_transpose2d(x, weight, stride=self.h, padding=0)
output = output.reshape(b, c, output.shape[2], output.shape[3])
return output
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., downsample=False):
super().__init__()
self.in_features = in_features
self.out_features = out_features = out_features or in_features
self.hidden_features = hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act1 = act_layer()
self.conv1 = nn.Conv2d(hidden_features, hidden_features, 5, 2 if downsample else 1, 2, groups=hidden_features)
# self.act2 = act_layer()
# self.conv2 = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, groups=hidden_features)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act1(x)
x = self.drop(x)
x = self.conv1(x)
# x = self.act2(x)
# x = self.drop(x)
# x = self.conv2(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_wavelets, window_size, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., dpe=True):
super().__init__()
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.num_wavelets = num_wavelets
self.dpe = dpe
self.window_size = window_size
self.scale = qk_scale or head_dim ** -0.5
# self.shuffle = nn.Conv2d(num_wavelets*3, num_wavelets*3, 1, 1, 0, groups=3) if num_wavelets > 1 else nn.Identity()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# if not dpe:
# # define a parameter table of relative position bias
# self.relative_position_bias_table = nn.Parameter(
# torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# # get pair-wise relative position index for each token inside the window
# coords_h = torch.arange(self.window_size[0])
# coords_w = torch.arange(self.window_size[1])
# coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
# coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
# relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
# relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
# relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
# relative_coords[:, :, 1] += self.window_size[1] - 1
# relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
# relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
# self.register_buffer("relative_position_index", relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self, x):
B, K, N, C = x.shape
# if K > 1:
# q, k, v = self.qkv(x).chunk(3, dim=-1)
# q, k, v = self.shuffle(torch.cat((q, k, v), dim=1)).reshape(B, K*3, N, self.num_heads, C // self.num_heads).transpose(2, 3).chunk(3, dim=1)
# q = q.flatten(0, 1)
# k = k.flatten(0, 1)
# v = v.flatten(0, 1)
# else:
q, k, v = self.qkv(x).reshape(B*K, N, self.num_heads, C // self.num_heads * 3).transpose(1, 2).chunk(3, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.scale
# if not self.dpe:
# relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
# self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
# relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
# attn = attn + relative_position_bias.unsqueeze(0)
attn = attn.softmax(dim=-1) # (B, h, N, N)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, K, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
K = self.num_wavelets
# flops += N * self.dim * K * K if K > 1 else 0
flops += N * self.dim * 3 * self.dim * K
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N * K
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads) * K
# x = self.proj(x)
flops += N * self.dim * self.dim * K
return flops
class HouseholderAttention(nn.Module):
def __init__(self, dim, scale, window_size, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, dpe=True, shuffle=False, layerscale=False, downsample=False):
super().__init__()
self.scale2 = int(2 ** scale)
self.num_wavelets = num_wavelets = int(4 ** scale)
self.window_size = window_size
self.dim = dim
self.mlp_ratio = mlp_ratio
self.layerscale = layerscale
init_values = 1.0e-5
self.dpe = nn.Conv2d(dim[0]*num_wavelets, dim[0]*num_wavelets, 3, 1, 1, groups=dim[0]*num_wavelets) if dpe else None
self.householder = HouseholderTransform(scale)
self.norm1 = LayerNorm1d(dim[0])
self.attn = Attention(
dim[0], num_wavelets, window_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, dpe=dpe)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = LayerNorm2d(dim[0])
self.mlp2 = Mlp(in_features=dim[0], hidden_features=int(dim[0] * mlp_ratio), out_features=dim[1], act_layer=act_layer, drop=drop, downsample=downsample)
self.downsample = nn.Sequential(LayerNorm2d(dim[0]), nn.Conv2d(dim[0], dim[1], 3, 2, 1)) if downsample else nn.Identity()
if layerscale:
self.gamma_1 = nn.Parameter(init_values * torch.ones(1, num_wavelets, 1, dim[0]),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones(1, dim[1], 1, 1),requires_grad=True)
def get_householder_attention(self, x):
_, _, H, W = x.shape
pad_l = pad_t = 0
pad_r = (self.scale2 - W % self.scale2) % self.scale2
pad_b = (self.scale2 - H % self.scale2) % self.scale2
if pad_r > 0 or pad_b > 0:
x = F.pad(x, (pad_l, pad_r, pad_t, pad_b))
_, _, h, w = x.shape
x, weight = self.householder(x, True)
# print(weight)
b, n, c, h, w = x.shape
x = x.flatten(-2).transpose(-2, -1).contiguous()
x = self.attn(self.norm1(x))
x = x.transpose(-2, -1).contiguous().reshape(b, n, c, h, w)
x = self.householder(x, False, weight)
if pad_r > 0 or pad_b > 0:
x = x[:, :, :H, :W].contiguous()
return x
def forward(self, x):
'''
x: (b, c, h, w)
'''
if self.layerscale:
x = x + self.drop_path(self.gamma_1 * self.get_householder_attention(x))
x = self.downsample(x) + self.drop_path(self.gamma_2 * self.mlp2(self.norm2(x)))
else:
x = x + self.drop_path(self.get_householder_attention(x))
x = self.downsample(x) + self.drop_path(self.mlp2(self.norm2(x)))
return x
class WindowAttention(nn.Module):
def __init__(self, dim, scale, window_size, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, dpe=True, shuffle=False, layerscale=False, downsample=False):
super().__init__()
self.scale = scale
self.num_wavelets = num_wavelets = int(4 ** scale)
self.window_size = window_size
self.dim = dim
self.mlp_ratio = mlp_ratio
self.layerscale = layerscale
init_values = 1.0e-5
self.dpe = nn.Conv2d(dim[0], dim[0], 3, 1, 1, groups=dim[0]) if dpe else None
# self.shuffle = nn.Conv2d(num_wavelets, num_wavelets, 1, 1, 0, bias=False) if (shuffle and self.num_wavelets>1) else None
self.norm1 = LayerNorm1d(dim[0])
self.attn = Attention(
dim[0], num_wavelets, window_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, dpe=dpe)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# self.norm2 = nn.BatchNorm2d(dim)
self.norm2 = LayerNorm2d(dim[0])
self.mlp2 = Mlp(in_features=dim[0], hidden_features=int(dim[0] * mlp_ratio), out_features=dim[1], act_layer=act_layer, drop=drop, downsample=downsample)
self.downsample = nn.Sequential(LayerNorm2d(dim[0]), nn.Conv2d(dim[0], dim[1], 3, 2, 1)) if downsample else nn.Identity()
if layerscale:
self.gamma_1 = nn.Parameter(init_values * torch.ones(1, 1, 1, dim[0]),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones(1, dim[1], 1, 1),requires_grad=True)
def get_window_attention(self, x):
b, c, H, W = x.shape
if self.scale > 0:
h0, w0 = self.window_size
else:
h0, w0 = H, W
pad_l = pad_t = 0
pad_r = (w0 - W % w0) % w0
pad_b = (h0 - H % h0) % h0
if pad_r > 0 or pad_b > 0:
x = F.pad(x, (pad_l, pad_r, pad_t, pad_b))
_, _, h, w = x.shape
x = x.reshape(b, c, h//h0, h0, w//w0, w0).permute(0, 2, 4, 3, 5, 1).contiguous().reshape(b, (h//h0)*(w//w0), h0*w0, c)
x = self.attn(self.norm1(x))
x = x.reshape(b, h//h0, w//w0, h0, w0, c).permute(0, 5, 1, 3, 2, 4).contiguous().reshape(b, c, h, w)
if pad_r > 0 or pad_b > 0:
x = x[:, :, :H, :W].contiguous()
return x
def forward(self, x):
'''
x: (b, c, h, w)
'''
# mlp
if self.layerscale:
x = x + self.drop_path(self.gamma_1 * self.get_window_attention(x))
x = self.downsample(x) + self.drop_path(self.gamma_2 * self.mlp2(self.norm2(x)))
else:
x = x + self.drop_path(self.get_window_attention(x))
x = self.downsample(x) + self.drop_path(self.mlp2(self.norm2(x)))
return x
class BasicLayer(nn.Module):
def __init__(self, attn, num_layers, dim, scale, window_size, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, dpe=True, shuffle=False, layerscale=True):
super().__init__()
self.num_wavelets = num_wavelets = int(4 ** scale)
self.window_size = window_size
self.use_checkpoint = use_checkpoint
self.blocks = nn.ModuleList([attn[i]([dim[0], dim[0] if i<num_layers-1 else dim[1]], scale, window_size, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop,
drop_path[i] if isinstance(drop_path, list) else drop_path, act_layer, norm_layer, dpe=dpe, shuffle=shuffle, layerscale=layerscale, downsample=(downsample and (i==num_layers-1))) for i in range(num_layers)])
# if downsample is not None:
# self.downsample = downsample(dim=dim, norm_layer=norm_layer)
# else:
# self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
# if self.downsample is not None:
# x = self.downsample(x)
return x
class WaveletEmbed(nn.Module):
def __init__(self, n_convs=3, wavelet_level=3, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
self.embed_dim = embed_dim
self.in_chans = in_chans
self.patch_size = patch_size
self.n_convs = n_convs
m_proj = [nn.Conv2d(in_chans, embed_dim//2, 3, 2, 1, bias=False),
nn.BatchNorm2d(embed_dim//2),
nn.ReLU(True),
nn.Conv2d(embed_dim//2, embed_dim, 3, 2, 1, bias=False),
nn.BatchNorm2d(embed_dim),
]
for _ in range(n_convs):
m_proj += [nn.ReLU(True),nn.Conv2d(embed_dim, embed_dim, 3, 1, 1, bias=False),
nn.BatchNorm2d(embed_dim),
]
if n_convs > 1:
m_proj += [nn.ReLU(True),nn.Conv2d(embed_dim, embed_dim, 1, 1, 0, bias=False),
LayerNorm2d(embed_dim),]
self.proj = nn.Sequential(*m_proj)
def forward(self, x):
x = self.proj(x) # (b, c, h/p, w/p)
return x
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Conv2d(dim[0], dim[1], 3, 2, 1, bias=False)
# self.norm = nn.BatchNorm2d(dim[1])
self.norm = nn.LayerNorm(dim[0])
def forward(self, x):
"""
x: B, H*W, C
"""
xn = self.norm(x.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
x = self.reduction(xn)
# x = self.norm(x)
return x
def flops(self, HW):
# H, W = self.input_resolution
flops = HW//4 * self.dim[1]
flops += HW//4 * self.dim[0] * self.dim[1] * 9
return flops
class OrthogonalTransformer(nn.Module):
def __init__(self, n_convs=3, wavelet_level=3, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7,
mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, dpe=False, shuffle=False, layerscale=True, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = embed_dim[-1]
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.wavelet_embed = WaveletEmbed(n_convs=n_convs, wavelet_level=wavelet_level, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], norm_layer=norm_layer if self.patch_norm else None)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# attn = [(WindowAttention if i%2 ==0 else WaveletAttention) for i in range(sum(depths))]
attn = [(WindowAttention if i%2 ==0 else HouseholderAttention) for i in range(sum(depths))]
# attn = [HouseholderAttention for i in range(sum(depths))]
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(attn[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
num_layers=depths[i_layer],
dim=[embed_dim[i_layer], embed_dim[i_layer+1] if i_layer<self.num_layers-1 else None],
scale=wavelet_level-i_layer,
window_size=to_2tuple(window_size),
num_heads=num_heads[i_layer],
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
dpe=dpe,
shuffle=shuffle,
layerscale=layerscale)
self.layers.append(layer)
self.norm = LayerNorm2d(self.num_features)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x = self.wavelet_embed(x)
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
# x = self.norm(x) # B, 1, L, C
x = self.norm(x)
x = self.avgpool(x).flatten(1) # B C 1
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
@register_model
def orthogonal_small(window_size, drop, drop_path):
model = OrthogonalTransformer(img_size=224,
n_convs = 2,
patch_size=4,
in_chans=3,
num_classes=1000,
embed_dim=[64, 128, 256, 512],
depths=[3, 5, 13, 3 ],
num_heads=[2, 4, 8, 16],
mlp_ratio=4,
window_size=window_size,
qkv_bias=True,
qk_scale=None,
drop_rate=drop,
drop_path_rate=drop_path,
ape=False,
patch_norm=True,
use_checkpoint=False,
layerscale=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6))
model.default_cfg = _cfg()
return model