forked from aloctavodia/Doing_bayesian_data_analysis
-
Notifications
You must be signed in to change notification settings - Fork 2
/
16_SimpleLinearRegressionPyMC.py
165 lines (142 loc) · 5.02 KB
/
16_SimpleLinearRegressionPyMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Estimating the mean and standard deviation of a Gaussian likelihood with a
hierarchical model.
"""
from __future__ import division
import numpy as np
import pymc3 as pm
from scipy.stats import norm
from scipy.interpolate import spline
import matplotlib.pyplot as plt
from plot_post import plot_post
from hpd import *
from HtWtDataGenerator import *
import seaborn as sns
# THE DATA.
# Simulated height and weight data:
n_subj = 30
HtWtData = HtWtDataGenerator(n_subj, rndsd=5678)
x = HtWtData[:,1]
y = HtWtData[:,2]
# Re-center data at mean, to reduce autocorrelation in MCMC sampling.
# Standardize (divide by SD) to make initialization easier.
x_m = np.mean(x)
x_sd = np.std(x)
y_m = np.mean(y)
y_sd = np.std(y)
zx = (x - x_m) / x_sd
zy = (y - y_m) / y_sd
# THE MODEL
with pm.Model() as model:
# define the priors
tau = pm.Gamma('tau', 0.001, 0.001)
beta0 = pm.Normal('beta0', mu=0, tau=1.0E-12)
beta1 = pm.Normal('beta1', mu=0, tau=1.0E-12)
mu = beta0 + beta1 * zx
# define the likelihood
yl = pm.Normal('yl', mu=mu, tau=tau, observed=zy)
# Generate a MCMC chain
start = pm.find_MAP()
step = pm.Metropolis()
trace = pm.sample(10000, step, start, progressbar=False)
# EXAMINE THE RESULTS
burnin = 5000
thin = 10
## Print summary for each trace
#pm.summary(trace[burnin::thin])
#pm.summary(trace)
## Check for mixing and autocorrelation
#pm.autocorrplot(trace[burnin::thin], vars =[tau])
#pm.autocorrplot(trace, vars =[tau])
## Plot KDE and sampled values for each parameter.
#pm.traceplot(trace[burnin::thin])
#pm.traceplot(trace)
## Extract chain values:
z0 = trace['beta0']
z1 = trace['beta1']
z_tau = trace['tau']
z_sigma = 1 / np.sqrt(z_tau) # Convert precision to SD
# Convert to original scale:
b1 = z1 * y_sd / x_sd
b0 = (z0 * y_sd + y_m - z1 * y_sd * x_m / x_sd)
sigma = z_sigma * y_sd
# Posterior prediction:
# Specify x values for which predicted y's are needed:
x_post_pred = np.arange(55, 81)
# Define matrix for recording posterior predicted y values at each x value.
# One row per x value, with each row holding random predicted y values.
post_samp_size = len(b1)
y_post_pred = np.zeros((len(x_post_pred), post_samp_size))
# Define matrix for recording HDI limits of posterior predicted y values:
y_HDI_lim = np.zeros((len(x_post_pred), 2))
# Generate posterior predicted y values.
# This gets only one y value, at each x, for each step in the chain.
for chain_idx in range(post_samp_size):
y_post_pred[:,chain_idx] = norm.rvs(loc=b0[chain_idx] + b1[chain_idx] * x_post_pred ,
scale = np.repeat([sigma[chain_idx]], [len(x_post_pred)]), size=len(x_post_pred))
for x_idx in range(len(x_post_pred)):
y_HDI_lim[x_idx] = hpd(y_post_pred[x_idx])
## Display believable beta0 and b1 values
plt.figure()
plt.subplot(1, 2, 1)
thin_idx = 50
plt.plot(z1[::thin_idx], z0[::thin_idx], 'b.', alpha=0.7)
plt.ylabel('Standardized Intercept')
plt.xlabel('Standardized Slope')
plt.subplot(1, 2, 2)
plt.plot(b1[::thin_idx], b0[::thin_idx], 'b.', alpha=0.7)
plt.ylabel('Intercept (ht when wt=0)')
plt.xlabel('Slope (pounds per inch)')
plt.tight_layout()
plt.savefig('Figure_16.4.png')
# Display the posterior of the b1:
plt.figure(figsize=(8, 5))
plt.subplot(1, 2, 1)
plot_post(z1, xlab='Standardized slope',
comp_val=0.0, bins=30, show_mode=False)
plt.subplot(1, 2, 2)
plot_post(b1, xlab='Slope (pounds per inch)',
comp_val=0.0, bins=30, show_mode=False)
plt.tight_layout()
plt.savefig('Figure_16.5.png')
# Display data with believable regression lines and posterior predictions.
plt.figure()
# Plot data values:
x_rang = np.max(x) - np.min(x)
y_rang = np.max(y) - np.min(y)
lim_mult = 0.25
x_lim = [np.min(x)-lim_mult*x_rang, np.max(x)+lim_mult*x_rang]
y_lim = [np.min(y)-lim_mult*y_rang, np.max(y)+lim_mult*y_rang]
plt.plot(x, y, 'k.')
plt.title('Data with credible regression lines')
plt.xlabel('X (height in inches)')
plt.ylabel('Y (weight in pounds)')
plt.xlim(x_lim)
plt.ylim(y_lim)
# Superimpose a smattering of believable regression lines:
for i in range(0, len(b0), 100):
plt.plot(x, b0[i] + b1[i]*x , c='k', alpha=0.05 )
plt.savefig('Figure_16.2.png')
# Display data with HDIs of posterior predictions.
plt.figure()
# Plot data values:
y_lim = [np.min(y_HDI_lim), np.max(y_HDI_lim)]
plt.plot(x, y, 'k.')
plt.xlim(x_lim)
plt.ylim(y_lim)
plt.xlabel('X (height in inches)')
plt.ylabel('Y (weight in pounds)')
plt.title('Data with 95% HDI & Mean of Posterior Predictions')
# Superimpose posterior predicted 95% HDIs:
y_post_pred_ave = np.average(y_post_pred, axis=1)
#Book version of the HDI representation
#plt.errorbar(x_post_pred,y_post_pred_ave,
# yerr=[abs(y_HDI_lim[:,0]-y_post_pred_ave),
# abs(y_HDI_lim[:,1]-y_post_pred_ave)], fmt='.')
#Smoothed version of the HDI representation
x_new = np.linspace(x_post_pred.min(), x_post_pred.max(), 200)
y_HDI_lim_smooth = spline(x_post_pred, y_HDI_lim, x_new)
plt.plot(x_post_pred, y_post_pred_ave)
plt.fill_between(x_new, y_HDI_lim_smooth[:,0], y_HDI_lim_smooth[:,1], alpha=0.3)
plt.savefig('Figure_16.6.png')
plt.show()