forked from aloctavodia/Doing_bayesian_data_analysis
-
Notifications
You must be signed in to change notification settings - Fork 2
/
12_OneOddGroupModelComp.py
104 lines (83 loc) · 3.26 KB
/
12_OneOddGroupModelComp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
Testing a point ('Null') Hypothesis (not using seudopriors)
"""
from __future__ import division
import numpy as np
import pymc3 as pm
from scipy.stats import binom
import matplotlib.pyplot as plt
from plot_post import plot_post
# THE DATA.
# For each subject, specify the condition s/he was in,
# the number of trials s/he experienced, and the number correct.
# (Randomly generated fictitious data.)
npg = 20 # number of subjects per group
ntrl = 20 # number of trials per subject
cond_of_subj = np.repeat([0, 1, 2, 3], npg)
n_trl_of_subj = np.repeat([ntrl], 4*npg)
np.random.seed(47401)
n_corr_of_subj = np.concatenate((binom.rvs(n=ntrl, p=.61, size=npg),
binom.rvs(n=ntrl, p=.50, size=npg),
binom.rvs(n=ntrl, p=.49, size=npg),
binom.rvs(n=ntrl, p=.51, size=npg)))
n_subj = len(cond_of_subj)
n_cond = len(set(cond_of_subj))
# THE MODEL
with pm.Model() as model:
# Hyperprior on model index:
model_index = pm.DiscreteUniform('model_index', lower=0, upper=1)
# Constants for hyperprior:
shape_Gamma = 1.0
rate_Gamma = 0.1
# Hyperprior on mu and kappa:
kappa = pm.Gamma('kappa', shape_Gamma, rate_Gamma, shape=n_cond)
mu0 = pm.Beta('mu0', 1, 1)
a_Beta0 = mu0 * kappa[cond_of_subj]
b_Beta0 = (1 - mu0) * kappa[cond_of_subj]
mu1 = pm.Beta('mu1', 1, 1, shape=n_cond)
a_Beta1 = mu1[cond_of_subj] * kappa[cond_of_subj]
b_Beta1 = (1 - mu1[cond_of_subj]) * kappa[cond_of_subj]
#Prior on theta
theta0 = pm.Beta('theta0', a_Beta0, b_Beta0, shape=n_subj)
theta1 = pm.Beta('theta1', a_Beta1, b_Beta1, shape=n_subj)
# if model_index == 0 then sample from theta1 else sample from theta0
theta = pm.switch(pm.eq(model_index, 0), theta1, theta0)
# Likelihood:
y = pm.Binomial('y', p=theta, n=n_trl_of_subj, observed=n_corr_of_subj)
# Sampling
start = pm.find_MAP()
step1 = pm.Metropolis(model.vars[1:])
step2 = pm.ElemwiseCategoricalStep(var=model_index,values=[0,1])
trace = pm.sample(20000, [step1, step2], start=start, progressbar=False)
# EXAMINE THE RESULTS.
burnin = 10000
thin = 10
## Print summary for each trace
#pm.summary(trace[burnin::thin])
#pm.summary(trace)
## Check for mixing and autocorrelation
#pm.autocorrplot(trace, vars =[mu, kappa])
## Plot KDE and sampled values for each parameter.
#pm.traceplot(trace[burnin::thin])
#pm.traceplot(trace)
model_idx_sample = trace['model_index'][burnin::thin]
pM1 = sum(model_idx_sample == 1) / len(model_idx_sample)
pM2 = 1 - pM1
plt.figure(figsize=(15, 15))
plt.subplot2grid((3,3), (0,0), colspan=3)
plt.plot(model_idx_sample, label='p(DiffMu|D) = %.3f ; p(SameMu|D) = %.3f' % (pM1, pM2));
plt.xlabel('Step in Markov Chain')
plt.legend(loc='upper right', framealpha=0.75)
count = 0
position = [(1,0), (1,1), (1,2), (2,0), (2,1), (2,2)]
for i in range(0, 4):
mui_sample = trace['mu1'][:,i][burnin::thin][model_idx_sample == 0]
for j in range(i+1, 4):
muj_sample = trace['mu1'][:,j][burnin::thin][model_idx_sample == 0]
plt.subplot2grid((3,3), position[count])
plot_post(mui_sample-muj_sample, xlab=r'$\mu_%s - \mu_%s$' % (i+1, j+1), show_mode=False, comp_val=0, framealpha=0.5)
plt.xlim(-0.3, 0.3)
count += 1
plt.tight_layout()
plt.savefig('Figure_12.5.png')
plt.show()