-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathword2vec.py
50 lines (36 loc) · 1.38 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import json
import sys
import logging
from pyspark import SparkContext
from pyspark.mllib.feature import Word2Vec
from generate_word2vec_training_data import WORD2VEC_TRAINING_FILE
WORD2VEC_TRACE = "word2vec_trace"
SYNONYM_DATA_FILE = "synonym_data_file.txt"
def word2vec(file_dir):
word2vec_training_file = file_dir + WORD2VEC_TRAINING_FILE
synonym_data_file = file_dir + SYNONYM_DATA_FILE
word2vec_trace_data = file_dir + WORD2VEC_TRACE
sc = SparkContext(appName="word2vec")
inp = sc.textFile(word2vec_training_file).map(lambda line: line.split(" "))
word2vec = Word2Vec()
model = word2vec.setLearningRate(0.02).setMinCount(5).setVectorSize(10).setSeed(2017).fit(inp)
vec = model.getVectors()
synonyms_data = open(synonym_data_file, "w")
logger = logging.getLogger()
logger.debug("len of vec:{0}".format(len(vec)))
for word in vec.keys():
synonyms = model.findSynonyms(word, 5)
entry = {"word": word}
synon_list = []
for synonym, cosine_distance in synonyms:
synon_list.append(synonym)
entry["synonyms"] = synon_list
synonyms_data.write(json.dumps(entry))
synonyms_data.write('\n')
synonyms_data.close()
model.save(sc, word2vec_trace_data)
sc.stop()
logger.info("Word2Vec training finished")
if __name__ == "__main__":
file_dir = sys.argv[1]
word2vec(file_dir)