-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAppleStore_multilinear_Regrission.py
39 lines (33 loc) · 1.42 KB
/
AppleStore_multilinear_Regrission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from sklearn import linear_model
#from AppleStore_Milestone1 import *
from sklearn import metrics
from AppleStore_Milestone_cop_1 import *
import pandas as pd
import numpy as np
from sklearn import model_selection
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt
import matplotlib.pyplot as plt
print('\t\t\t Multi Linear Regressor Model \t\t\t\n','*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*')
#multilinear regression
MultiLinearModel = linear_model.LinearRegression()
MultiLinearModel.fit(X_train, Y_train)
prediction= MultiLinearModel.predict(X_train)
print('Mean Square Error of train', metrics.mean_squared_error(np.asarray(Y_train), prediction))
print("train accuracy = ",metrics.r2_score(Y_train, prediction))
prediction= MultiLinearModel.predict(X_test)
for i in range (len(Y_test)):
print('test value',Y_test[i])
print('pred test',prediction[i])
print('\n')
print('Mean Square Error of test', metrics.mean_squared_error(np.asarray(Y_test), prediction))