-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAppleStore_Adaboost.py
62 lines (50 loc) · 2.31 KB
/
AppleStore_Adaboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from AppleStore_Milestone2 import *
from sklearn import tree
import numpy as np
from sklearn import model_selection
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt
import matplotlib.pyplot as plt
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import SGDClassifier
import time
print('\t\t\t AdaBoost Classifier Model \t\t\t\n','*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*')
start_t=time.time()
AdaBoostClassifierModel = AdaBoostClassifier(SGDClassifier(alpha=0.01),
algorithm="SAMME",
n_estimators=100)
AdaBoostClassifierModel.fit(X_train, Y_train)
end_t=time.time()
y_trainprediction = AdaBoostClassifierModel.predict(X_train)
accuracyTrain=np.mean(y_trainprediction == Y_train)
print ("The achieved accuracy using Adaboost is " + str(accuracyTrain),'\n trainning time = ',end_t-start_t)
start_t=time.time()
y_testprediction = AdaBoostClassifierModel.predict(X_test)
accuracyTest=np.mean(y_testprediction == Y_test)
end_t=time.time()
print ("The achieved accuracy using Adaboost is " + str(accuracyTest),'\n testining time = ',end_t-start_t)
joblib.dump(AdaBoostClassifierModel,'joblib_AdaBoostClassifierModel.pkl')
# loaded_model = joblib.load('joblib_AdaBoostClassifierModel.pkl')
# predict = loaded_model.predict(X_test)
# accuracy = loaded_model.score(X_test, Y_test)
# print('Decission tree accuracy test : ' + str(accuracy),'\n')
#bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),
# algorithm="SAMME",
# n_estimators=300)
#scaler = StandardScaler()
#scaler.fit(X_train)
#X_train = scaler.transform(X_train)
#X_test = scaler.transform(X_test)