-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiovid_feat_mm_transformer_wtn_kfold.py
293 lines (223 loc) · 11.5 KB
/
biovid_feat_mm_transformer_wtn_kfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from video_dataset_mm import VideoFrameDataset, ImglistToTensor
from comet_ml import Experiment
from torchvision import transforms
import torch
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import os
from biovid_physio_classification import PhysioResNet18
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import random
from torchvision.models.video import r3d_18
from torchvision import models
from tqdm import tqdm
from torch.optim.lr_scheduler import ReduceLROnPlateau
from validate import validate_mmtransformer
from models.models import VIS_PHY_MODEL_CAM, MultimodalTransformer
from models.orig_cam import CAM
from models.transformation_network import TransformNet
import copy
from mmd_loss import MMD_loss
"""
Training settings
"""
num_epochs = 100
best_epoch = 0
check_every = 1
b_size = 64
num_classes = 2 # Number of classes
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
best_val_acc=0
lr_vis_phy = 0.0001
lr_mmtransformer = 0.001
###### COMET Settings #######
experiment = Experiment(
api_key="U0t7sSZhwEHvDLko0tJ4kbPH0",
project_name="dmwl-t",
workspace="haseebaslam952",
disabled=False,)
parameters = {'batch_size': b_size,
'learning_rate bb': lr_vis_phy,
'learning_rate mmtransformer': lr_mmtransformer,
'epochs':num_epochs
}
experiment.log_parameters(parameters)
criterion = nn.CrossEntropyLoss()
#change the criterion to MMD loss
# criterion_tn_mmd = MMD_loss()
# criterion_tn = nn.MSELoss()
videos_root = '/home/livia/work/Biovid/PartB/biovid_classes'
preprocess = transforms.Compose([
ImglistToTensor(), # list of PIL images to (FRAMES x CHANNELS x HEIGHT x WIDTH) tensor
transforms.Resize(112), # image batch, resize smaller edge to 299
# transforms.CenterCrop(112), # image batch, center crop to square 299x299
transforms.RandomHorizontalFlip(p=0.7), # video batch, each frame horizontally flipped with probability 0.5
# transforms.RandomCrop(112), # video batch, each frame randomly cropped to 224x224
transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.2, hue=0.1), # video batch, color jitter with probability 0.1
# transforms.RandomGrayscale(p=0.1), # video batch, random grayscale with probability 0.1
transforms.RandomRotation(10), # video batch, each frame randomly rotated by -10 to 10 degrees
# transforms.RandomPerspective(distortion_scale=0.1, p=0.1, interpolation=3), # video batch, each frame randomly perspectively transformed with probability 0.1
# transforms.RandomErasing(p=0.1, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False), # video batch, each frame randomly erased with probability 0.1
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # video batch, normalize with ImageNet mean and standard deviation
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def denormalize(video_tensor):
inverse_normalize = transforms.Normalize(
mean=[-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225],
std=[1 / 0.229, 1 / 0.224, 1 / 0.225]
)
return (inverse_normalize(video_tensor) * 255.).type(torch.uint8).permute(0, 2, 3, 1).numpy()
def train_model(train_file_path, val_file_path,fold_num):
best_transform_loss = 10
best_transform_epoch = 0
train_annotation_file = os.path.join(videos_root, train_file_path)
val_annotation_file = os.path.join(videos_root, val_file_path)
model_save_path_bb = os.path.join(os.getcwd(), 'saved_weights_DMWL/all_model_best_feat_concat_fusion_mmtransformer_visphy_m_DMWL'+str(fold_num)+'.pth')
model_save_path_mmtransformer = os.path.join(os.getcwd(), 'saved_weights_DMWL/all_model_best_feat_concat_fusion_mmtransformer_DMWL'+str(fold_num)+'.pth')
model_save_path_tn = os.path.join(os.getcwd(), 'saved_weights_DMWL/transform_net_saved_fold_'+str(fold_num)+'.pth')
vis_phy_model=VIS_PHY_MODEL_CAM().to(device=device)
mm_transformer = MultimodalTransformer(visual_dim=512, physiological_dim=512, num_heads=2, hidden_dim=512, num_layers=2, num_classes=2)
mm_transformer = mm_transformer.to(device=device)
transform_net = TransformNet().to(device=device)
vis_phy_optimizer = optim.SGD(vis_phy_model.parameters(), lr=lr_vis_phy)
mmtransformer_optimizer = optim.SGD(mm_transformer.parameters(), lr=lr_mmtransformer)
# mmtransformer_optimizer = optim.Adam(mm_transformer.parameters(), lr=lr_mmtransformer, weight_decay=0.0001, amsgrad=True, eps=1e-8, betas=(0.9, 0.999))
optimizer_tn = optim.Adam(transform_net.parameters(), lr=0.00005)
# scheduler minimum learning rate is 1e-6
scheduler = ReduceLROnPlateau(mmtransformer_optimizer, mode='max', factor=0.01, patience=10, verbose=True, min_lr=1e-7)
train_dataset = VideoFrameDataset(
root_path=videos_root,
annotationfile_path=train_annotation_file,
num_segments=10,
frames_per_segment=1,
imagefile_template='img_{:05d}.jpg',
transform=preprocess,
test_mode=False)
val_dataset = VideoFrameDataset(
root_path=videos_root,
annotationfile_path=val_annotation_file,
num_segments=10,
frames_per_segment=1,
imagefile_template='img_{:05d}.jpg',
transform=preprocess,
test_mode=True)
train_dataloader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=b_size,
shuffle=True,
num_workers=4,
pin_memory=True)
val_dataloader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=b_size,
shuffle=False,
num_workers=4,
pin_memory=True)
best_val_acc = 0
min_transform_loss = 10
with experiment.train():
for epoch in tqdm(range(num_epochs), desc='Epochs'):
vis_phy_model.vis_model.train()
vis_phy_model.phy_model.train()
mm_transformer.train()
# transform_net.train()
# classifier_m.train()
running_loss = 0.0
correct = 0
total = 0
for i,(spec_2d,video_batch, labels) in enumerate(train_dataloader,0):
mmtransformer_optimizer.zero_grad()
vis_phy_optimizer.zero_grad()
# optimizer_tn.zero_grad()
video_batch=video_batch.permute(0, 2, 1, 3, 4)
video_batch = video_batch.to(device)
with torch.no_grad():
vis_feats, phy_feats = vis_phy_model.model_out_feats(video_batch,spec_2d)
# vis_feats_tn = copy.deepcopy(vis_feats)
#normalize vis_feats and phy_feats
# vis_feats = torch.nn.functional.normalize(vis_feats, p=2, dim=1)
# phy_feats = torch.nn.functional.normalize(phy_feats, p=2, dim=1)
vis_feats = vis_feats.unsqueeze(1)
phy_feats = phy_feats.unsqueeze(1)
outs = mm_transformer(vis_feats, phy_feats)
labels = labels.to(device)
t_loss = criterion(outs, labels)
t_loss.backward()
vis_phy_optimizer.step()
mmtransformer_optimizer.step()
# detached_vis_feats = vis_feats.detach()
# detached_phy_feats = phy_feats.detach()
# recon_phy_feats = transform_net(detached_vis_feats.squeeze(1))
# transform_loss = criterion_tn_mmd(recon_phy_feats, detached_phy_feats.squeeze(1))
# transform_loss.backward()
# optimizer_tn.step()
running_loss += t_loss.item()
_, predicted = torch.max(outs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
if i % 100 == 99: # Print every 100 mini-batches
print(f"[{epoch + 1}, {i + 1}] loss: {running_loss / 100:.3f}")
running_loss = 0.0
train_accuracy= 100 * correct / total
print("*********************************************\n")
print(f"Accuracy after epoch {epoch + 1}: {train_accuracy}%")
# print(f"Transform loss after epoch {epoch + 1}: {transform_loss}")
train_loss= running_loss / 100
experiment.log_metric('Loss', train_loss,epoch= epoch)
experiment.log_metric('Accuracy', train_accuracy ,epoch= epoch)
# experiment.log_metric('Transform Loss', transform_loss, epoch= epoch)
# if transform_loss < min_transform_loss:
# min_transform_loss = transform_loss
# best_transform_loss = transform_loss
# best_transform_epoch = epoch+1
# # model_save_path_tn = os.path.join(os.getcwd(), 'transform_net_saved_DMWL.pth')
# torch.save(transform_net.state_dict(), model_save_path_tn)
# print('Best transform model saved at epoch: ', epoch+1)
# last_lr=scheduler.get_last_lr()
# experiment.log_metric('Learning Rate', last_lr,epoch= epoch)
if epoch % check_every == 0:
val_acc, val_loss = validate_mmtransformer(vis_phy_model,mm_transformer, val_dataloader, criterion, device)
print( "Validation accuracy: ", val_acc)
experiment.log_metric('Val Accuracy', val_acc,epoch= epoch)
experiment.log_metric('Val Loss', val_loss,epoch= epoch)
# scheduler.step(val_acc)
current_lr = mmtransformer_optimizer.param_groups[0]['lr']
experiment.log_metric('Learning Rate', current_lr,epoch= epoch)
# print('Current learning rate: ', current_lr)
if val_acc > best_val_acc:
best_val_acc = val_acc
# model_save_path_bb = os.path.join(os.getcwd(), 'model_best_feat_concat_fusion_mmtransformer_visphy_m.pth')
# model_save_path_mmtransformer = os.path.join(os.getcwd(), 'model_best_feat_concat_fusion_mmtransformer.pth')
torch.save(vis_phy_model.state_dict(), model_save_path_bb)
torch.save(mm_transformer.state_dict(), model_save_path_mmtransformer)
print('Best model saved at epoch: ', epoch+1)
best_epoch = epoch+1
print("Finished Training")
train_accuracy = 100 * correct / total
avg_train_loss = running_loss / len(train_dataloader)
print(f'Training accuracy: {train_accuracy}%')
print(f'Training loss: {avg_train_loss}')
print("Best model saved at epoch: ", best_epoch)
print("Best validation accuracy: ", best_val_acc)
return best_val_acc, best_transform_loss, best_transform_epoch
def train_k_fold():
k=5
#create list of size
best_acc_list = []
bes_tl_list = []
for i in range(k):
print("Fold: ", i+1)
train_file_path = 'fold_'+ str(i+1) +'_train.txt'
val_file_path = 'fold_'+ str(i+1) +'_test.txt'
fold_num = str(i+1)
best_fold_acc, btl, bte=train_model(train_file_path, val_file_path,fold_num)
best_acc_list.append(best_fold_acc)
bes_tl_list.append(btl)
print("Best validation accuracy for each fold: ", best_acc_list)
print("Best transform loss for each fold: ", bes_tl_list)
print("Average best validation accuracy: ", sum(best_acc_list)/k)
if __name__ == '__main__':
train_k_fold()