forked from google-deepmind/tapnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation_datasets.py
586 lines (496 loc) · 20.2 KB
/
evaluation_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation dataset creation functions."""
import csv
import functools
import io
import os
from os import path
import pickle
import random
from typing import Iterable, Mapping, Tuple, Union
from absl import logging
from kubric.challenges.point_tracking import dataset
import mediapy as media
import numpy as np
from PIL import Image
import scipy.io as sio
import tensorflow as tf
import tensorflow_datasets as tfds
from tapnet.utils import transforms
DatasetElement = Mapping[str, Mapping[str, Union[np.ndarray, str]]]
TRAIN_SIZE = (24, 256, 256, 3)
def resize_video(video: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
"""Resize a video to output_size."""
# If you have a GPU, consider replacing this with a GPU-enabled resize op,
# such as a jitted jax.image.resize. It will make things faster.
return media.resize_video(video, TRAIN_SIZE[1:3])
def compute_tapvid_metrics(
query_points: np.ndarray,
gt_occluded: np.ndarray,
gt_tracks: np.ndarray,
pred_occluded: np.ndarray,
pred_tracks: np.ndarray,
query_mode: str,
) -> Mapping[str, np.ndarray]:
"""Computes TAP-Vid metrics (Jaccard, Pts.
Within Thresh, Occ.
Acc.)
See the TAP-Vid paper for details on the metric computation. All inputs are
given in raster coordinates. The first three arguments should be the direct
outputs of the reader: the 'query_points', 'occluded', and 'target_points'.
The paper metrics assume these are scaled relative to 256x256 images.
pred_occluded and pred_tracks are your algorithm's predictions.
This function takes a batch of inputs, and computes metrics separately for
each video. The metrics for the full benchmark are a simple mean of the
metrics across the full set of videos. These numbers are between 0 and 1,
but the paper multiplies them by 100 to ease reading.
Args:
query_points: The query points, an in the format [t, y, x]. Its size is
[b, n, 3], where b is the batch size and n is the number of queries
gt_occluded: A boolean array of shape [b, n, t], where t is the number of
frames. True indicates that the point is occluded.
gt_tracks: The target points, of shape [b, n, t, 2]. Each point is in the
format [x, y]
pred_occluded: A boolean array of predicted occlusions, in the same format
as gt_occluded.
pred_tracks: An array of track predictions from your algorithm, in the same
format as gt_tracks.
query_mode: Either 'first' or 'strided', depending on how queries are
sampled. If 'first', we assume the prior knowledge that all points
before the query point are occluded, and these are removed from the
evaluation.
Returns:
A dict with the following keys:
occlusion_accuracy: Accuracy at predicting occlusion.
pts_within_{x} for x in [1, 2, 4, 8, 16]: Fraction of points
predicted to be within the given pixel threshold, ignoring occlusion
prediction.
jaccard_{x} for x in [1, 2, 4, 8, 16]: Jaccard metric for the given
threshold
average_pts_within_thresh: average across pts_within_{x}
average_jaccard: average across jaccard_{x}
"""
metrics = {}
# Don't evaluate the query point. Numpy doesn't have one_hot, so we
# replicate it by indexing into an identity matrix.
one_hot_eye = np.eye(gt_tracks.shape[2])
query_frame = query_points[..., 0]
query_frame = np.round(query_frame).astype(np.int32)
evaluation_points = one_hot_eye[query_frame] == 0
# If we're using the first point on the track as a query, don't evaluate the
# other points.
if query_mode == 'first':
for i in range(gt_occluded.shape[0]):
index = np.where(gt_occluded[i] == 0)[0][0]
evaluation_points[i, :index] = False
elif query_mode != 'strided':
raise ValueError('Unknown query mode ' + query_mode)
# Occlusion accuracy is simply how often the predicted occlusion equals the
# ground truth.
occ_acc = np.sum(
np.equal(pred_occluded, gt_occluded) & evaluation_points,
axis=(1, 2),
) / np.sum(evaluation_points)
metrics['occlusion_accuracy'] = occ_acc
# Next, convert the predictions and ground truth positions into pixel
# coordinates.
visible = np.logical_not(gt_occluded)
pred_visible = np.logical_not(pred_occluded)
all_frac_within = []
all_jaccard = []
for thresh in [1, 2, 4, 8, 16]:
# True positives are points that are within the threshold and where both
# the prediction and the ground truth are listed as visible.
within_dist = np.sum(
np.square(pred_tracks - gt_tracks),
axis=-1,
) < np.square(thresh)
is_correct = np.logical_and(within_dist, visible)
# Compute the frac_within_threshold, which is the fraction of points
# within the threshold among points that are visible in the ground truth,
# ignoring whether they're predicted to be visible.
count_correct = np.sum(
is_correct & evaluation_points,
axis=(1, 2),
)
count_visible_points = np.sum(visible & evaluation_points, axis=(1, 2))
frac_correct = count_correct / count_visible_points
metrics['pts_within_' + str(thresh)] = frac_correct
all_frac_within.append(frac_correct)
true_positives = np.sum(
is_correct & pred_visible & evaluation_points, axis=(1, 2)
)
# The denominator of the jaccard metric is the true positives plus
# false positives plus false negatives. However, note that true positives
# plus false negatives is simply the number of points in the ground truth
# which is easier to compute than trying to compute all three quantities.
# Thus we just add the number of points in the ground truth to the number
# of false positives.
#
# False positives are simply points that are predicted to be visible,
# but the ground truth is not visible or too far from the prediction.
gt_positives = np.sum(visible & evaluation_points, axis=(1, 2))
false_positives = (~visible) & pred_visible
false_positives = false_positives | ((~within_dist) & pred_visible)
false_positives = np.sum(false_positives & evaluation_points, axis=(1, 2))
jaccard = true_positives / (gt_positives + false_positives)
metrics['jaccard_' + str(thresh)] = jaccard
all_jaccard.append(jaccard)
metrics['average_jaccard'] = np.mean(
np.stack(all_jaccard, axis=1),
axis=1,
)
metrics['average_pts_within_thresh'] = np.mean(
np.stack(all_frac_within, axis=1),
axis=1,
)
return metrics
def latex_table(mean_scalars: Mapping[str, float]) -> str:
"""Generate a latex table for displaying TAP-Vid and PCK metrics."""
if 'average_jaccard' in mean_scalars:
latex_fields = [
'average_jaccard',
'average_pts_within_thresh',
'occlusion_accuracy',
'jaccard_1',
'jaccard_2',
'jaccard_4',
'jaccard_8',
'jaccard_16',
'pts_within_1',
'pts_within_2',
'pts_within_4',
'pts_within_8',
'pts_within_16',
]
header = (
'AJ & $<\\delta^{x}_{avg}$ & OA & Jac. $\\delta^{0}$ & '
+ 'Jac. $\\delta^{1}$ & Jac. $\\delta^{2}$ & '
+ 'Jac. $\\delta^{3}$ & Jac. $\\delta^{4}$ & $<\\delta^{0}$ & '
+ '$<\\delta^{1}$ & $<\\delta^{2}$ & $<\\delta^{3}$ & '
+ '$<\\delta^{4}$'
)
else:
latex_fields = ['PCK@0.1', 'PCK@0.2', 'PCK@0.3', 'PCK@0.4', 'PCK@0.5']
header = ' & '.join(latex_fields)
body = ' & '.join(
[f'{float(np.array(mean_scalars[x]*100)):.3}' for x in latex_fields]
)
return '\n'.join([header, body])
def sample_queries_strided(
target_occluded: np.ndarray,
target_points: np.ndarray,
frames: np.ndarray,
query_stride: int = 5,
) -> Mapping[str, np.ndarray]:
"""Package a set of frames and tracks for use in TAPNet evaluations.
Given a set of frames and tracks with no query points, sample queries
strided every query_stride frames, ignoring points that are not visible
at the selected frames.
Args:
target_occluded: Boolean occlusion flag, of shape [n_tracks, n_frames],
where True indicates occluded.
target_points: Position, of shape [n_tracks, n_frames, 2], where each point
is [x,y] scaled between 0 and 1.
frames: Video tensor, of shape [n_frames, height, width, 3]. Scaled between
-1 and 1.
query_stride: When sampling query points, search for un-occluded points
every query_stride frames and convert each one into a query.
Returns:
A dict with the keys:
video: Video tensor of shape [1, n_frames, height, width, 3]. The video
has floats scaled to the range [-1, 1].
query_points: Query points of shape [1, n_queries, 3] where
each point is [t, y, x] scaled to the range [-1, 1].
target_points: Target points of shape [1, n_queries, n_frames, 2] where
each point is [x, y] scaled to the range [-1, 1].
trackgroup: Index of the original track that each query point was
sampled from. This is useful for visualization.
"""
tracks = []
occs = []
queries = []
trackgroups = []
total = 0
trackgroup = np.arange(target_occluded.shape[0])
for i in range(0, target_occluded.shape[1], query_stride):
mask = target_occluded[:, i] == 0
query = np.stack(
[
i * np.ones(target_occluded.shape[0:1]),
target_points[:, i, 1],
target_points[:, i, 0],
],
axis=-1,
)
queries.append(query[mask])
tracks.append(target_points[mask])
occs.append(target_occluded[mask])
trackgroups.append(trackgroup[mask])
total += np.array(np.sum(target_occluded[:, i] == 0))
return {
'video': frames[np.newaxis, ...],
'query_points': np.concatenate(queries, axis=0)[np.newaxis, ...],
'target_points': np.concatenate(tracks, axis=0)[np.newaxis, ...],
'occluded': np.concatenate(occs, axis=0)[np.newaxis, ...],
'trackgroup': np.concatenate(trackgroups, axis=0)[np.newaxis, ...],
}
def sample_queries_first(
target_occluded: np.ndarray,
target_points: np.ndarray,
frames: np.ndarray,
) -> Mapping[str, np.ndarray]:
"""Package a set of frames and tracks for use in TAPNet evaluations.
Given a set of frames and tracks with no query points, use the first
visible point in each track as the query.
Args:
target_occluded: Boolean occlusion flag, of shape [n_tracks, n_frames],
where True indicates occluded.
target_points: Position, of shape [n_tracks, n_frames, 2], where each point
is [x,y] scaled between 0 and 1.
frames: Video tensor, of shape [n_frames, height, width, 3]. Scaled between
-1 and 1.
Returns:
A dict with the keys:
video: Video tensor of shape [1, n_frames, height, width, 3]
query_points: Query points of shape [1, n_queries, 3] where
each point is [t, y, x] scaled to the range [-1, 1]
target_points: Target points of shape [1, n_queries, n_frames, 2] where
each point is [x, y] scaled to the range [-1, 1]
"""
valid = np.sum(~target_occluded, axis=1) > 0
target_points = target_points[valid, :]
target_occluded = target_occluded[valid, :]
query_points = []
for i in range(target_points.shape[0]):
index = np.where(target_occluded[i] == 0)[0][0]
x, y = target_points[i, index, 0], target_points[i, index, 1]
query_points.append(np.array([index, y, x])) # [t, y, x]
query_points = np.stack(query_points, axis=0)
return {
'video': frames[np.newaxis, ...],
'query_points': query_points[np.newaxis, ...],
'target_points': target_points[np.newaxis, ...],
'occluded': target_occluded[np.newaxis, ...],
}
def create_jhmdb_dataset(jhmdb_path: str) -> Iterable[DatasetElement]:
"""JHMDB dataset, including fields required for PCK evaluation."""
gt_dir = jhmdb_path
videos = []
for file in tf.io.gfile.listdir(path.join(gt_dir, 'splits')):
# JHMDB file containing the first split, which is standard for this type of
# evaluation.
if not file.endswith('split1.txt'):
continue
video_folder = '_'.join(file.split('_')[:-2])
for video in tf.io.gfile.GFile(path.join(gt_dir, 'splits', file), 'r'):
video, traintest = video.split()
video, _ = video.split('.')
traintest = int(traintest)
video_path = path.join(video_folder, video)
if traintest == 2:
videos.append(video_path)
if not videos:
raise ValueError('No JHMDB videos found in directory ' + str(jhmdb_path))
# Shuffle so numbers converge faster.
random.shuffle(videos)
for video in videos:
logging.info(video)
joints = path.join(gt_dir, 'joint_positions', video, 'joint_positions.mat')
if not tf.io.gfile.exists(joints):
logging.info('skip %s', video)
continue
gt_pose = sio.loadmat(tf.io.gfile.GFile(joints, 'rb'))['pos_img']
gt_pose = np.transpose(gt_pose, [1, 2, 0])
frames = path.join(gt_dir, 'Rename_Images', video, '*.png')
framefil = tf.io.gfile.glob(frames)
framefil.sort()
def read_frame(f):
im = Image.open(tf.io.gfile.GFile(f, 'rb'))
im = im.convert('RGB')
im_data = np.array(im.getdata(), np.uint8)
return im_data.reshape([im.size[1], im.size[0], 3])
frames = [read_frame(x) for x in framefil]
frames = np.stack(frames)
height = frames.shape[1]
width = frames.shape[2]
invalid_x = np.logical_or(
gt_pose[:, 0:1, 0] < 0,
gt_pose[:, 0:1, 0] >= width,
)
invalid_y = np.logical_or(
gt_pose[:, 0:1, 1] < 0,
gt_pose[:, 0:1, 1] >= height,
)
invalid = np.logical_or(invalid_x, invalid_y)
invalid = np.tile(invalid, [1, gt_pose.shape[1]])
invalid = invalid[:, :, np.newaxis].astype(np.float32)
gt_pose_orig = gt_pose
gt_pose = transforms.convert_grid_coordinates(
gt_pose,
np.array([width, height]),
np.array(TRAIN_SIZE[2:0:-1]),
)
# Set invalid poses to -1 (outside the frame)
gt_pose = (1.0 - invalid) * gt_pose + invalid * (-1.0)
frames = resize_video(frames, TRAIN_SIZE[1:3])
frames = frames / (255.0 / 2.0) - 1.0
queries = gt_pose[:, 0]
queries = np.concatenate(
[queries[..., 0:1] * 0, queries[..., ::-1]],
axis=-1,
)
if gt_pose.shape[1] < frames.shape[0]:
# Some videos have pose sequences that are shorter than the frame
# sequence (usually because the person disappears). In this case,
# truncate the video.
logging.warning('short video!!')
frames = frames[: gt_pose.shape[1]]
converted = {
'video': frames[np.newaxis, ...],
'query_points': queries[np.newaxis, ...],
'target_points': gt_pose[np.newaxis, ...],
'gt_pose': gt_pose[np.newaxis, ...],
'gt_pose_orig': gt_pose_orig[np.newaxis, ...],
'occluded': gt_pose[np.newaxis, ..., 0] * 0,
'fname': video,
'im_size': np.array([height, width]),
}
yield {'jhmdb': converted}
def create_kubric_eval_train_dataset(
mode: str,
max_dataset_size: int = 100,
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on Kubric training data."""
res = dataset.create_point_tracking_dataset(
split='train',
train_size=TRAIN_SIZE[1:3],
batch_dims=[1],
shuffle_buffer_size=None,
repeat=False,
vflip='vflip' in mode,
random_crop=False,
)
num_returned = 0
for data in res[0]():
if num_returned >= max_dataset_size:
break
num_returned += 1
yield {'kubric': data}
def create_kubric_eval_dataset(mode: str) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on Kubric val data."""
res = dataset.create_point_tracking_dataset(
split='validation',
batch_dims=[1],
shuffle_buffer_size=None,
repeat=False,
vflip='vflip' in mode,
random_crop=False,
)
np_ds = tfds.as_numpy(res)
for data in np_ds:
yield {'kubric': data}
def create_davis_dataset(
davis_points_path: str, query_mode: str = 'strided', full_resolution=False
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on DAVIS data."""
pickle_path = davis_points_path
with tf.io.gfile.GFile(pickle_path, 'rb') as f:
davis_points_dataset = pickle.load(f)
if full_resolution:
ds, _ = tfds.load(
'davis/full_resolution', split='validation', with_info=True
)
to_iterate = tfds.as_numpy(ds)
else:
to_iterate = davis_points_dataset.keys()
for tmp in to_iterate:
if full_resolution:
frames = tmp['video']['frames']
video_name = tmp['metadata']['video_name'].decode()
else:
video_name = tmp
frames = davis_points_dataset[video_name]['video']
frames = resize_video(frames, TRAIN_SIZE[1:3])
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = davis_points_dataset[video_name]['points']
target_occ = davis_points_dataset[video_name]['occluded']
target_points = transforms.convert_grid_coordinates(
target_points,
np.array([1.0, 1.0]),
np.array([frames.shape[-2], frames.shape[-3]]),
)
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'davis': converted}
def create_rgb_stacking_dataset(
robotics_points_path: str, query_mode: str = 'strided'
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on robotics data."""
pickle_path = robotics_points_path
with tf.io.gfile.GFile(pickle_path, 'rb') as f:
robotics_points_dataset = pickle.load(f)
for example in robotics_points_dataset:
frames = example['video']
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = example['points']
target_occ = example['occluded']
target_points *= np.array([TRAIN_SIZE[2], TRAIN_SIZE[1]])
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'robotics': converted}
def create_kinetics_dataset(
kinetics_path: str, query_mode: str = 'strided'
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on Kinetics point tracking."""
all_paths = tf.io.gfile.glob(path.join(kinetics_path, '*_of_0010.pkl'))
for pickle_path in all_paths:
with open(pickle_path, 'rb') as f:
data = pickle.load(f)
if isinstance(data, dict):
data = list(data.values())
# idx = random.randint(0, len(data) - 1)
for idx in range(len(data)):
example = data[idx]
frames = example['video']
if isinstance(frames[0], bytes):
# TAP-Vid is stored and JPEG bytes rather than `np.ndarray`s.
def decode(frame):
byteio = io.BytesIO(frame)
img = Image.open(byteio)
return np.array(img)
frames = np.array([decode(frame) for frame in frames])
if frames.shape[1] > TRAIN_SIZE[1] or frames.shape[2] > TRAIN_SIZE[2]:
frames = resize_video(frames, TRAIN_SIZE[1:3])
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = example['points']
target_occ = example['occluded']
target_points *= np.array([TRAIN_SIZE[2], TRAIN_SIZE[1]])
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'kinetics': converted}