-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
executable file
·244 lines (214 loc) · 12.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import traceback
import argparse
import torch
import torch.backends.cudnn as cudnn
from nets.model_helper import ModelHelper
from learners.basic_learner import BasicLearner
from learners.trick_learner import TrickLearner
from learners.chann_cifar_learner import ChannCifarLearner
from learners.chann_ilsvrc_learner import ChannIlsvrcLearner
from data_loader import *
from utils.helper import *
import torch.multiprocessing as mp
import torch.distributed as dist
from utils.dist_utils import *
import os
import numpy as np
import random
import pdb
parser = argparse.ArgumentParser()
parser.add_argument('--fix_random', action='store_true', help='fix randomness')
parser.add_argument('--seed', default=1234, type=int)
parser.add_argument('--gpu_id', default='0', help='gpu id')
parser.add_argument('--job_id', default='', help='generated automatically')
parser.add_argument('--exec_mode', default='', choices=['train', 'eval', 'finetune', 'misc'])
parser.add_argument('--print_freq', default=30, type=int, help='training printing frequency')
parser.add_argument('--model_type', default='', help='what model do you want to use')
parser.add_argument('--data_path', default='TODO', help='path to the dataset')
parser.add_argument('--data_aug', action='store_false', help='whether to use data augmentation')
parser.add_argument('--save_path', default='./models', help='save path for models')
parser.add_argument('--load_path', default='', help='path to load the model')
parser.add_argument('--load_path_log', default='record.log', help='suffix to name record.log')
parser.add_argument('--eval_epoch', type=int, default=1, help='perform eval at intervals')
# multi-process gpu
parser.add_argument('--dist-url', default='tcp://127.0.0.1', type=str,
help='url used to set up distributed training')
parser.add_argument('--num_workers', type=int, default=4, help='num of workers data loaders')
parser.add_argument('--port', default=6669, type=int, help='port of server')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--local_rank', type=int,
help='local node rank for distributed learning (useless for now)')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--distributed', default=False, type=bool, help='use distributed or not. Do NOT SET THIS')
# learner config
parser_learner = parser.add_argument_group('Learner')
parser_learner.add_argument('--learner', default='', choices=['vanilla', 'trick', 'chann_cifar', 'chann_ilsvrc']) #'chann_search' is excluded for simplicity
parser_learner.add_argument('--lr', type=float, default=1e-1, help='initial learning rate')
parser_learner.add_argument('--lr_decy_type', default='multi_step', choices=['multi_step', 'cosine'], help='lr decy type for model params')
parser_learner.add_argument('--lr_min', type=float, default=2e-4, help='minimal learning rate for cosine decy')
parser_learner.add_argument('--momentum', type=float, default=0.9, help='momentum value')
parser_learner.add_argument('--nesterov', action='store_true')
parser_learner.add_argument('--weight_decay', type=float, default=2e-4, help='weight decay for resnet')
parser_learner.add_argument('--dropout_rate', default=0.0, type=float, help='dropout rate for mobilenet_v2, default: 0')
parser.add_argument('--gamma', type=float, default=0.99, help='time decay for baseline update')
parser_learner.add_argument('--flops', action='store_true', help='add flops regularization')
parser_learner.add_argument('--orthg_weight', type=float, default=0.001, help='orthognal regularization weight')
parser_learner.add_argument('--ft_schedual' , default='', choices=['follow_meta','fixed'])
parser_learner.add_argument('--ft_proj_lr' , type=float, default=0.001, help='lr in fixed ft_schedual')
parser_learner.add_argument('--norm_constraint' , default='', choices=['regularization','constraint'])
parser_learner.add_argument('--norm_weight' , type=float, default=0.01, help='norm 1 regularization weight')
parser_learner.add_argument('--updt_proj', type=int, default=10, help='intervals to update orthogonal loss')
parser_learner.add_argument('--ortho_type', default='l1', choices=['l1', 'l2'], help='type of norm for orthogonal regularization')
parser_controller = parser.add_argument_group('Controller')
parser_controller.add_argument('--controller_type', type=str, default='ENAS', help='SAMPLE | LSTM | ENAS')
parser_controller.add_argument('--controller_hid', type=int, default=100, help='hidden num of controller')
parser_controller.add_argument('--controller_temperature', type=float, default=None, help='temperature for lstm')
parser_controller.add_argument('--controller_tanh_constant', type=float, default=None, help='tanh constant for lstm')
parser_controller.add_argument('--entropy_coeff', type=float, default=0.005, help='coefficient for entropy')
parser_controller.add_argument('--lstm_num_layers', type=int, default=1, help='number of layers in lstm')
parser_controller.add_argument('--controller_op_tanh_reduce', type=float, default=2.5, help='coefficient for entropy')
parser_arc = parser.add_argument_group('Architecture')
parser_arc.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
parser_arc.add_argument('--arch_learning_rate', type=float, default=5e-5, help='arch learning rate')
parser_arc.add_argument('--candidate_width', default='16,32,64,96', help='candidate width for search')
parser_arc.add_argument('--max_width', type=int, default=168, help='width of shared weights')
parser_arc.add_argument('--lam_init', type=float, default=1e-3, help='strength for size penalty')
parser_arc.add_argument('--lam_rate', type=float, default=1.25, help='multiplicative factor of lambda')
parser_arc.add_argument('--max_flops', type=float, default=4.1e7, help='maximum flops of constraint')
parser_arc.add_argument('--flops_dir', default='./resnet18_flops.pkl', help='flops table for the current network')
parser_arc.add_argument('--flops_coeff', nargs='+', type=float, default=[0.0, -0.1], help='coefficient for flops: [alpha, beta]')
parser_arc.add_argument('--cfg', default='', help='decoding cfgs obtained by one-shot model')
parser_arc.add_argument('--drop_path', action='store_true', help='use dorp path or not')
parser_arc.add_argument('--drop_rate', type=float, default=0.5, help='drop path propability')
parser_arc.add_argument('--n_test_archs', type=int, default=20, help='number of candidate archs to be evaluated')
parser_arc.add_argument('--noise_tolerance', type=float, default=0.15, help='the noise tolerance which is used to restrict the maximum reward to avoid an unexpected speedup')
parser_arc.add_argument('--beam_search', action='store_true')
parser_arc.add_argument('--top_seq', type=int, default=4, help='top sequences from beam search')
parser_arc.add_argument('--multiplier', type=float, default=1., help='width multiplier')
parser_arc.add_argument('--blockwise', action='store_true', help='search channels blockwisely (helpful for deep nets)')
parser_arc.add_argument('--use_aux', action='store_true', help='use auxiliary acc or not')
parser_arc.add_argument('--overlap', default=1.0, type=float,
help='1.0: ordinal, 0.0: independent. Remember to change max_width to sum of candidate width in independent mode.')
# dataset params
parser_dataset = parser.add_argument_group('Dataset')
parser_dataset.add_argument('--dataset', choices=['cifar10', 'cifar100', 'ilsvrc_12'], default='cifar10', help='dataset to use')
parser_dataset.add_argument('--batch_size', type=int, default=128, help='batch_size for dataset')
parser_dataset.add_argument('--epochs', type=int, default=200, help='resnet:200')
parser_dataset.add_argument('--warmup_epochs', type=int, default=-1, help='epochs training weights only')
parser_dataset.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
parser_dataset.add_argument('--total_portion', type=float, default=1.0, help='portion of data will be used in searching')
# trick params
parser_trick = parser.add_argument_group("Tricks")
parser_trick.add_argument('--mixup', action='store_true')
parser_trick.add_argument('--mixup_alpha', type=float, default=1.0)
parser_trick.add_argument('--label_smooth', action='store_true')
parser_trick.add_argument('--label_smooth_eps', type=float, default=0.1)
parser_trick.add_argument('--se', action='store_true')
parser_trick.add_argument('--se_reduction', type=int, default=-1)
def set_loader(args):
sampler = None
if args.dataset == 'cifar10':
if args.learner in ['vanilla', 'trick']:
loaders = cifar10_loader_train(args, num_workers=4)
else:
loaders = cifar10_loader_search(args, num_workers=4)
elif args.dataset == 'cifar100':
loaders = cifar100_loader(args, num_workers=4)
elif args.dataset == 'ilsvrc_12':
loaders, sampler = ilsvrc12_loader_train(args, num_workers=args.num_workers)
else:
raise ValueError("Unknown dataset")
return loaders, sampler
def set_learner(args):
if args.learner == 'vanilla':
return BasicLearner
elif args.learner == 'trick':
return TrickLearner
elif args.learner == 'chann_cifar':
return ChannCifarLearner
elif args.learner == 'chann_ilsvrc':
return ChannIlsvrcLearner
else:
raise ValueError("Unknown learner")
def main():
##################### Preliminaries ##################
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ngpus_per_node = torch.cuda.device_count()
args.distributed = True if ngpus_per_node > 1 else False
#####################################################
try:
if args.distributed:
rank, world_size = init_dist(backend=args.dist_backend, master_ip=args.dist_url, port=args.port)
args.rank = rank
args.world_size = world_size
print("Distributed Enabled. Rank %d initalized" % args.rank)
else:
print("Single model training...")
if args.fix_random:
# init seed within each thread
manualSeed = args.seed
np.random.seed(manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.cuda.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
# NOTE: literally you should uncomment the following, but slower
cudnn.deterministic = True
cudnn.benchmark = False
print('Warning: You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
else:
cudnn.benchmark = True
if args.rank == 0:
# either single GPU or multi GPU with rank = 0
print("+++++++++++++++++++++++++")
print("torch version:", torch.__version__)
print("+++++++++++++++++++++++++")
# setup logging
if args.exec_mode in ['train', 'misc']:
args.job_id = generate_job_id()
init_logging(os.path.join(args.save_path, '_'.join([args.model_type, args.learner]), args.job_id, 'record.log'))
elif args.exec_mode == 'finetune':
args.job_id = generate_job_id()
init_logging(os.path.join(os.path.dirname(args.load_path), 'ft_record.log'))
else:
init_logging(os.path.join(os.path.dirname(args.load_path), args.load_path_log))
print_args(vars(args))
logging.info("Using GPU: "+args.gpu_id)
# create model
model_helper = ModelHelper()
model = model_helper.get_model(args)
model.cuda()
if args.distributed:
# share the same initialization
broadcast_params(model)
loaders, sampler = set_loader(args)
learner_fn = set_learner(args)
learner = learner_fn(model, loaders, args, device)
if args.exec_mode == 'train':
learner.train(sampler)
elif args.exec_mode == 'eval':
learner.evaluate()
elif args.exec_mode == 'finetune':
learner.finetune(sampler)
elif args.exec_mode == 'misc':
learner.misc()
if args.distributed:
dist.destroy_process_group()
return 0
except:
traceback.print_exc()
if args.distributed:
dist.destroy_process_group()
return 1
if __name__ == '__main__':
main()