-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhourglass_tiny.py
923 lines (861 loc) · 37.9 KB
/
hourglass_tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# -*- coding: utf-8 -*-
"""
Deep Human Pose Estimation
Project by Walid Benbihi
MSc Individual Project
Imperial College
Created on Mon Jul 10 19:13:56 2017
@author: Walid Benbihi
@mail : w.benbihi(at)gmail.com
@github : https://github.com/wbenbihi/hourglasstensorlfow/
Abstract:
This python code creates a Stacked Hourglass Model
(Credits : A.Newell et al.)
(Paper : https://arxiv.org/abs/1603.06937)
Code translated from 'anewell' github
Torch7(LUA) --> TensorFlow(PYTHON)
(Code : https://github.com/anewell/pose-hg-train)
Modification are made and explained in the report
Goal : Achieve Real Time detection (Webcam)
----- Modifications made to obtain faster results (trade off speed/accuracy)
This work is free of use, please cite the author if you use it!
"""
import time
import tensorflow as tf
import numpy as np
import sys
import datetime
import os
import json
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
class HourglassModel():
""" HourglassModel class: (to be renamed)
Generate TensorFlow model to train and predict Human Pose from images (soon videos)
Please check README.txt for further information on model management.
"""
def __init__(self, nFeat = 64, nStack = 4, nModules = 1, nLow = 4, outputDim = 25, batch_size = 16, drop_rate = 0.2, lear_rate = 2.5e-4, decay = 0.96, decay_step = 2000, dataset = None, training = True, w_summary = True, logdir_train = None, logdir_test = None,tiny = True, attention = False,modif = True,w_loss = False, name = 'tiny_hourglass', joints = ['0','1','2','3','4','5','6','7','8','9']):
""" Initializer
Args:
nStack : number of stacks (stage/Hourglass modules)
nFeat : number of feature channels on conv layers
nLow : number of downsampling (pooling) per module
outputDim : number of output Dimension (16 for MPII)
batch_size : size of training/testing Batch
dro_rate : Rate of neurons disabling for Dropout Layers
lear_rate : Learning Rate starting value
decay : Learning Rate Exponential Decay (decay in ]0,1], 1 for constant learning rate)
decay_step : Step to apply decay
dataset : Dataset (class DataGenerator)
training : (bool) True for training / False for prediction
w_summary : (bool) True/False for summary of weight (to visualize in Tensorboard)
tiny : (bool) Activate Tiny Hourglass
attention : (bool) Activate Multi Context Attention Mechanism (MCAM)
modif : (bool) Boolean to test some network modification # DO NOT USE IT ! USED TO TEST THE NETWORK
name : name of the model
"""
self.nStack = nStack
self.nFeat = nFeat
self.nModules = nModules
self.outDim = outputDim
self.batchSize = batch_size
self.training = training
self.w_summary = w_summary
self.tiny = tiny
self.dropout_rate = drop_rate
self.learning_rate = lear_rate
self.decay = decay
self.name = name
self.attention = attention
self.decay_step = decay_step
self.nLow = nLow
self.modif = modif
self.dataset = dataset
self.cpu = '/cpu:0'
self.gpu = '/gpu:0' # CHANGE TO CPU IF NOT USING GPU
self.logdir_train = logdir_train
self.logdir_test = logdir_test
self.joints = joints
self.w_loss = w_loss
# ACCESSOR
def get_input(self):
""" Returns Input (Placeholder) Tensor
Image Input :
Shape: (None,256,256,3)
Type : tf.float32
Warning:
Be sure to build the model first
"""
return self.img
def get_output(self):
""" Returns Output Tensor
Output Tensor :
Shape: (None, nbStacks, 64, 64, outputDim)
Type : tf.float32
Warning:
Be sure to build the model first
"""
return self.output
def get_label(self):
""" Returns Label (Placeholder) Tensor
Image Input :
Shape: (None, nbStacks, 64, 64, outputDim)
Type : tf.float32
Warning:
Be sure to build the model first
"""
return self.gtMaps
def get_loss(self):
""" Returns Loss Tensor
Image Input :
Shape: (1,)
Type : tf.float32
Warning:
Be sure to build the model first
"""
return self.loss
def get_saver(self):
""" Returns Saver
/!\ USE ONLY IF YOU KNOW WHAT YOU ARE DOING
Warning:
Be sure to build the model first
"""
return self.saver
def generate_model(self):
""" Create the complete graph
"""
startTime = time.time()
print('CREATE MODEL:')
with tf.device(self.gpu):
with tf.name_scope('inputs'):
# Shape Input Image - batchSize: None, height: 256, width: 256, channel: 3 (RGB)
self.img = tf.placeholder(dtype= tf.float32, shape= (None, 256, 256, 3), name = 'input_img') # Was 256,256,3 CHANGE TO 128 for heatmaps
if self.w_loss:
self.weights = tf.placeholder(dtype = tf.float32, shape = (None, self.outDim))
# Shape Ground Truth Map: batchSize x nStack x 64 x 64 x outDim
self.gtMaps = tf.placeholder(dtype = tf.float32, shape = (None, self.nStack, 64, 64, self.outDim)) # Was 64, 64 CHANGE TO 32 FOR HEATMAPS
# TODO : Implement weighted loss function
# NOT USABLE AT THE MOMENT
#weights = tf.placeholder(dtype = tf.float32, shape = (None, self.nStack, 1, 1, self.outDim))
inputTime = time.time()
print('---Inputs : Done (' + str(int(abs(inputTime-startTime))) + ' sec.)')
if self.attention:
self.output = self._graph_mcam(self.img)
else :
self.output = self._graph_hourglass(self.img)
graphTime = time.time()
print('---Graph : Done (' + str(int(abs(graphTime-inputTime))) + ' sec.)')
with tf.name_scope('loss'):
if self.w_loss:
self.loss = tf.reduce_mean(self.weighted_bce_loss(), name='reduced_loss')
else:
self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.output, labels= self.gtMaps), name= 'cross_entropy_loss')
lossTime = time.time()
print('---Loss : Done (' + str(int(abs(graphTime-lossTime))) + ' sec.)')
with tf.device(self.cpu):
with tf.name_scope('accuracy'):
self._accuracy_computation()
accurTime = time.time()
print('---Acc : Done (' + str(int(abs(accurTime-lossTime))) + ' sec.)')
with tf.name_scope('steps'):
self.train_step = tf.Variable(0, name = 'global_step', trainable= False)
with tf.name_scope('lr'):
self.lr = tf.train.exponential_decay(self.learning_rate, self.train_step, self.decay_step, self.decay, staircase= True, name= 'learning_rate')
lrTime = time.time()
print('---LR : Done (' + str(int(abs(accurTime-lrTime))) + ' sec.)')
with tf.device(self.gpu):
with tf.name_scope('rmsprop'):
self.rmsprop = tf.train.RMSPropOptimizer(learning_rate= self.lr)
optimTime = time.time()
print('---Optim : Done (' + str(int(abs(optimTime-lrTime))) + ' sec.)')
with tf.name_scope('minimizer'):
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(self.update_ops):
self.train_rmsprop = self.rmsprop.minimize(self.loss, self.train_step)
minimTime = time.time()
print('---Minimizer : Done (' + str(int(abs(optimTime-minimTime))) + ' sec.)')
self.init = tf.global_variables_initializer()
initTime = time.time()
print('---Init : Done (' + str(int(abs(initTime-minimTime))) + ' sec.)')
with tf.device(self.cpu):
with tf.name_scope('training'):
tf.summary.scalar('loss', self.loss, collections = ['train'])
tf.summary.scalar('learning_rate', self.lr, collections = ['train'])
with tf.name_scope('summary'):
for i in range(len(self.joints)):
tf.summary.scalar(self.joints[i], self.joint_accur[i], collections = ['train', 'test'])
self.train_op = tf.summary.merge_all('train')
self.test_op = tf.summary.merge_all('test')
self.weight_op = tf.summary.merge_all('weight')
endTime = time.time()
print('Model created (' + str(int(abs(endTime-startTime))) + ' sec.)')
del endTime, startTime, initTime, optimTime, minimTime, lrTime, accurTime, lossTime, graphTime, inputTime
def restore(self, load = None):
""" Restore a pretrained model
Args:
load : Model to load (None if training from scratch) (see README for further information)
"""
with tf.name_scope('Session'):
with tf.device(self.gpu):
self._init_session()
self._define_saver_summary(summary = False)
if load is not None:
print('Loading Trained Model')
t = time.time()
self.saver.restore(self.Session, load)
print('Model Loaded (', time.time() - t,' sec.)')
else:
print('Please give a Model in args (see README for further information)')
def _train(self, nEpochs = 10, epochSize = 1000, saveStep = 500, validIter = 10):
"""
"""
with tf.name_scope('Train'):
self.generator = self.dataset._aux_generator(self.batchSize, self.nStack, normalize = True, sample_set = 'train')
self.valid_gen = self.dataset._aux_generator(self.batchSize, self.nStack, normalize = True, sample_set = 'valid')
startTime = time.time()
self.resume = {}
self.resume['accur'] = []
self.resume['loss'] = []
self.resume['err'] = []
# Added accuracy output before any training
print('Epoch:' + '0/' + str(nEpochs) + '\n')
print('Before training\n')
#accuracy_array = np.array([0.0] * len(self.joint_accur))
validation_loss = 0
print("validIter: "+ str(validIter))
for i in range(validIter):
img_valid, gt_valid = next(self.valid_gen)
np.set_printoptions(threshold=np.nan)
accuracy_pred, output, target = self.Session.run([self.loss, self.output, self.gtMaps], feed_dict={self.img: img_valid, self.gtMaps: gt_valid})
#with open('output26FREQ.txt', 'w') as f:
# json.dump(output.tolist(), f)
#with open('gtMaps26FREQ.txt', 'w') as f:
#json.dump(target.tolist(), f)
#with open('extras.txt', 'w') as f:
#f.write(str(self.nStack) + '\n')
#f.write(str(self.batchSize))
#print("PRINTED TO FILE")
#if i == 1:
#print(accuracy_pred)
#accuracy_array += np.array(accuracy_pred, dtype=np.float32) #/ validIter
validation_loss += accuracy_pred
av_val_loss = validation_loss / validIter
val_acc = (1 - av_val_loss) * 100 #[:6]
print('--Avg. Validation Accuracy =', str(val_acc), '%')
#end my insertion
for epoch in range(1,nEpochs+1):
epochstartTime = time.time()
avg_cost = 0.
cost = 0.
print('Epoch :' + str(epoch) + '/' + str(nEpochs) + '\n')
# Training Set
for i in range(epochSize):
# DISPLAY PROGRESS BAR
# TODO : Customize Progress Bar
percent = ((i+1)/epochSize) * 100
num = np.int(20*percent/100)
tToEpoch = int((time.time() - epochstartTime) * (100 - percent)/(percent))
sys.stdout.write('\r Train: {0}>'.format("="*num) + "{0}>".format(" "*(20-num)) + '||' + str(percent)[:4] + '%' + ' -cost: ' + str(cost)[:6] + ' -avg_cost: ' + str(avg_cost)[:6] + ' -timeToEnd: ' + str(tToEpoch) + ' sec.')
sys.stdout.flush()
img_train, gt_train = next(self.generator)
if i % saveStep == 0:
if self.w_loss:
_, c, summary = self.Session.run([self.train_rmsprop, self.loss, self.train_op], feed_dict = {self.img : img_train, self.gtMaps: gt_train})
else:
_, c, summary = self.Session.run([self.train_rmsprop, self.loss, self.train_op], feed_dict = {self.img : img_train, self.gtMaps: gt_train})
# Save summary (Loss + Accuracy)
self.train_summary.add_summary(summary, epoch*epochSize + i)
self.train_summary.flush()
else:
if self.w_loss:
_, c, = self.Session.run([self.train_rmsprop, self.loss], feed_dict = {self.img : img_train, self.gtMaps: gt_train, self.weights: weight_train})
else:
_, c, = self.Session.run([self.train_rmsprop, self.loss], feed_dict = {self.img : img_train, self.gtMaps: gt_train})
#if i == 1:
#print(self.get_output())
cost += c
avg_cost += c/epochSize
epochfinishTime = time.time()
#Save Weight (axis = epoch)
if self.w_loss:
weight_summary = self.Session.run(self.weight_op, {self.img : img_train, self.gtMaps: gt_train, self.weights: weight_train})
else :
weight_summary = self.Session.run(self.weight_op, {self.img : img_train, self.gtMaps: gt_train})
self.train_summary.add_summary(weight_summary, epoch)
self.train_summary.flush()
#self.weight_summary.add_summary(weight_summary, epoch)
#self.weight_summary.flush()
print('Epoch ' + str(epoch) + '/' + str(nEpochs) + ' done in ' + str(int(epochfinishTime-epochstartTime)) + ' sec.' + ' -avg_time/batch: ' + str(((epochfinishTime-epochstartTime)/epochSize))[:4] + ' sec.')
with tf.name_scope('save'):
self.saver.save(self.Session, os.path.join(os.getcwd(),str(self.name + '_' + str(epoch + 1))))
self.resume['loss'].append(cost)
# Validation Set
#accuracy_array = np.array([0.0]*len(self.joint_accur))
validation_loss = 0
#temp = self.get_output()
#tf.Print(temp, [temp])
for i in range(validIter):
img_valid, gt_valid = next(self.valid_gen)
np.set_printoptions(threshold=np.nan)
accuracy_pred, output, target = self.Session.run([self.loss, self.output, self.gtMaps], feed_dict = {self.img : img_valid, self.gtMaps: gt_valid})
#with open('output99.txt', 'w') as f:
# json.dump(output.tolist(), f)
#with open('gtMaps99.txt', 'w') as f:
# json.dump(target.tolist(), f)
#with open('extras99.txt', 'w') as f:
# f.write(str(self.nStack) + '\n')
# f.write(str(self.batchSize))
#if i is 1:
#print(accuracy_pred)
#accuracy_array += np.array(accuracy_pred, dtype = np.float32) #/ validIter
validation_loss += accuracy_pred
avg_acc = (1-avg_cost)*100
av_val_loss = validation_loss / validIter
val_acc = (1 - av_val_loss) * 100 # [:6]
print('--Avg. Training Accuracy =', str(avg_acc), '%') #str((np.sum(accuracy_array) / len(accuracy_array)) * 100)[:6], '%' )
print('--Avg. Validation Accuracy =', str(val_acc), '%')
self.resume['accur'].append(accuracy_pred)
#self.resume['err'].append(np.sum(accuracy_array) / len(accuracy_array))
valid_summary = self.Session.run(self.test_op, feed_dict={self.img : img_valid, self.gtMaps: gt_valid})
self.test_summary.add_summary(valid_summary, epoch)
self.test_summary.flush()
print('Training Done')
print('Resume:' + '\n' + ' Epochs: ' + str(nEpochs) + '\n' + ' n. Images: ' + str(nEpochs * epochSize * self.batchSize) )
print(' Final Loss: ' + str(cost) + '\n' + ' Relative Loss: ' + str(100*self.resume['loss'][-1]/(self.resume['loss'][0] + 0.1)) + '%' )
print(' Relative Improvement: ' + str((self.resume['err'][-1] - self.resume['err'][0]) * 100) +'%')
print(' Training Time: ' + str( datetime.timedelta(seconds=time.time() - startTime)))
def record_training(self, record):
""" Record Training Data and Export them in CSV file
Args:
record : record dictionnary
"""
out_file = open(self.name + '_train_record.csv', 'w')
for line in range(len(record['accur'])):
out_string = ''
labels = [record['loss'][line]] + [record['err'][line]] + record['accur'][line]
for label in labels:
out_string += str(label) + ', '
out_string += '\n'
out_file.write(out_string)
out_file.close()
print('Training Record Saved')
def training_init(self, nEpochs = 10, epochSize = 1000, saveStep = 500, dataset = None, load = None):
""" Initialize the training
Args:
nEpochs : Number of Epochs to train
epochSize : Size of one Epoch
saveStep : Step to save 'train' summary (has to be lower than epochSize)
dataset : Data Generator (see generator.py)
load : Model to load (None if training from scratch) (see README for further information)
"""
with tf.name_scope('Session'):
with tf.device(self.gpu):
self._init_weight()
self._define_saver_summary()
if load is not None:
self.saver.restore(self.Session, load)
#try:
# self.saver.restore(self.Session, load)
#except Exception:
# print('Loading Failed! (Check README file for further information)')
self._train(nEpochs, epochSize, saveStep, validIter=10)
def weighted_bce_loss(self):
""" Create Weighted Loss Function
WORK IN PROGRESS
"""
self.bceloss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.output, labels= self.gtMaps), name= 'cross_entropy_loss')
e1 = tf.expand_dims(self.weights,axis = 1, name = 'expdim01')
e2 = tf.expand_dims(e1,axis = 1, name = 'expdim02')
e3 = tf.expand_dims(e2,axis = 1, name = 'expdim03')
return tf.multiply(e3,self.bceloss, name = 'lossW')
def _accuracy_computation(self):
""" Computes accuracy tensor
"""
self.joint_accur = []
for i in range(len(self.joints)):
self.joint_accur.append(self._accur(self.output[:, self.nStack - 1, :, :,i], self.gtMaps[:, self.nStack - 1, :, :, i], self.batchSize))
def _define_saver_summary(self, summary = True):
""" Create Summary and Saver
Args:
logdir_train : Path to train summary directory
logdir_test : Path to test summary directory
"""
if (self.logdir_train == None) or (self.logdir_test == None):
raise ValueError('Train/Test directory not assigned')
else:
with tf.device(self.cpu):
self.saver = tf.train.Saver()
if summary:
with tf.device(self.gpu):
self.train_summary = tf.summary.FileWriter(self.logdir_train, tf.get_default_graph())
self.test_summary = tf.summary.FileWriter(self.logdir_test)
#self.weight_summary = tf.summary.FileWriter(self.logdir_train, tf.get_default_graph())
def _init_weight(self):
""" Initialize weights
"""
print('Session initialization')
self.Session = tf.Session()
t_start = time.time()
self.Session.run(self.init)
print('Sess initialized in ' + str(int(time.time() - t_start)) + ' sec.')
def _init_session(self):
""" Initialize Session
"""
print('Session initialization')
t_start = time.time()
self.Session = tf.Session()
print('Sess initialized in ' + str(int(time.time() - t_start)) + ' sec.')
def _graph_hourglass(self, inputs):
"""Create the Network
Args:
inputs : TF Tensor (placeholder) of shape (None, 256, 256, 3) #TODO : Create a parameter for customize size
"""
with tf.name_scope('model'):
with tf.name_scope('preprocessing'):
# Input Dim : nbImages x 256 x 256 x 3
pad1 = tf.pad(inputs, [[0,0],[2,2],[2,2],[0,0]], name='pad_1')
# Dim pad1 : nbImages x 260 x 260 x 3
conv1 = self._conv_bn_relu(pad1, filters= 64, kernel_size = 6, strides = 2, name = 'conv_256_to_128')
# Dim conv1 : nbImages x 128 x 128 x 64
r1 = self._residual(conv1, numOut = 128, name = 'r1')
# Dim pad1 : nbImages x 128 x 128 x 128
pool1 = tf.contrib.layers.max_pool2d(r1, [2,2], [2,2], padding='VALID')
# Dim pool1 : nbImages x 64 x 64 x 128
if self.tiny:
r3 = self._residual(pool1, numOut=self.nFeat, name='r3')
else:
r2 = self._residual(pool1, numOut= int(self.nFeat/2), name = 'r2')
r3 = self._residual(r2, numOut= self.nFeat, name = 'r3')
# Storage Table
hg = [None] * self.nStack
ll = [None] * self.nStack
ll_ = [None] * self.nStack
drop = [None] * self.nStack
out = [None] * self.nStack
out_ = [None] * self.nStack
sum_ = [None] * self.nStack
if self.tiny:
with tf.name_scope('stacks'):
with tf.name_scope('stage_0'):
hg[0] = self._hourglass(r3, self.nLow, self.nFeat, 'hourglass')
drop[0] = tf.layers.dropout(hg[0], rate = self.dropout_rate, training = self.training, name = 'dropout')
ll[0] = self._conv_bn_relu(drop[0], self.nFeat, 1, 1, name = 'll')
if self.modif:
# TEST OF BATCH RELU
out[0] = self._conv_bn_relu(ll[0], self.outDim, 1, 1, 'VALID', 'out')
else:
out[0] = self._conv(ll[0], self.outDim, 1, 1, 'VALID', 'out')
out_[0] = self._conv(out[0], self.nFeat, 1, 1, 'VALID', 'out_')
#print('THIS ONE 1')
sum_[0] = tf.add_n([out_[0], ll[0], r3], name = 'merge')
for i in range(1, self.nStack - 1):
with tf.name_scope('stage_' + str(i)):
hg[i] = self._hourglass(sum_[i-1], self.nLow, self.nFeat, 'hourglass')
drop[i] = tf.layers.dropout(hg[i], rate = self.dropout_rate, training = self.training, name = 'dropout')
ll[i] = self._conv_bn_relu(drop[i], self.nFeat, 1, 1, name= 'll')
if self.modif:
# TEST OF BATCH RELU
out[i] = self._conv_bn_relu(ll[i], self.outDim, 1, 1, 'VALID', 'out')
else:
out[i] = self._conv(ll[i], self.outDim, 1, 1, 'VALID', 'out')
out_[i] = self._conv(out[i], self.nFeat, 1, 1, 'VALID', 'out_')
#print('THIS ONE 2')
sum_[i] = tf.add_n([out_[i], ll[i], sum_[i-1]], name= 'merge')
with tf.name_scope('stage_' + str(self.nStack - 1)):
hg[self.nStack - 1] = self._hourglass(sum_[self.nStack - 2], self.nLow, self.nFeat, 'hourglass')
drop[self.nStack-1] = tf.layers.dropout(hg[self.nStack-1], rate = self.dropout_rate, training = self.training, name = 'dropout')
ll[self.nStack - 1] = self._conv_bn_relu(drop[self.nStack-1], self.nFeat,1,1, 'VALID', 'conv')
if self.modif:
out[self.nStack - 1] = self._conv_bn_relu(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out')
else:
out[self.nStack - 1] = self._conv(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out')
if self.modif:
return tf.nn.sigmoid(tf.stack(out, axis= 1 , name= 'stack_output'),name = 'final_output')
else:
return tf.stack(out, axis= 1 , name = 'final_output')
else:
with tf.name_scope('stacks'):
with tf.name_scope('stage_0'):
hg[0] = self._hourglass(r3, self.nLow, self.nFeat, 'hourglass')
drop[0] = tf.layers.dropout(hg[0], rate = self.dropout_rate, training = self.training, name = 'dropout')
ll[0] = self._conv_bn_relu(drop[0], self.nFeat, 1,1, 'VALID', name = 'conv')
ll_[0] = self._conv(ll[0], self.nFeat, 1, 1, 'VALID', 'll')
if self.modif:
# TEST OF BATCH RELU
out[0] = self._conv_bn_relu(ll[0], self.outDim, 1, 1, 'VALID', 'out')
else:
out[0] = self._conv(ll[0], self.outDim, 1, 1, 'VALID', 'out')
out_[0] = self._conv(out[0], self.nFeat, 1, 1, 'VALID', 'out_')
#print('THIS ONE 3')
sum_[0] = tf.add_n([out_[0], r3, ll_[0]], name='merge')
for i in range(1, self.nStack -1):
with tf.name_scope('stage_' + str(i)):
hg[i] = self._hourglass(sum_[i-1], self.nLow, self.nFeat, 'hourglass')
drop[i] = tf.layers.dropout(hg[i], rate = self.dropout_rate, training = self.training, name = 'dropout')
ll[i] = self._conv_bn_relu(drop[i], self.nFeat, 1, 1, 'VALID', name= 'conv')
ll_[i] = self._conv(ll[i], self.nFeat, 1, 1, 'VALID', 'll')
if self.modif:
out[i] = self._conv_bn_relu(ll[i], self.outDim, 1, 1, 'VALID', 'out')
else:
out[i] = self._conv(ll[i], self.outDim, 1, 1, 'VALID', 'out')
out_[i] = self._conv(out[i], self.nFeat, 1, 1, 'VALID', 'out_')
#print('THIS ONE 4')
sum_[i] = tf.add_n([out_[i], sum_[i-1], ll_[0]], name= 'merge')
with tf.name_scope('stage_' + str(self.nStack -1)):
hg[self.nStack - 1] = self._hourglass(sum_[self.nStack - 2], self.nLow, self.nFeat, 'hourglass')
drop[self.nStack-1] = tf.layers.dropout(hg[self.nStack-1], rate = self.dropout_rate, training = self.training, name = 'dropout')
ll[self.nStack - 1] = self._conv_bn_relu(drop[self.nStack-1], self.nFeat, 1, 1, 'VALID', 'conv')
if self.modif:
out[self.nStack - 1] = self._conv_bn_relu(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out')
else:
out[self.nStack - 1] = self._conv(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out')
if self.modif:
return tf.nn.sigmoid(tf.stack(out, axis= 1 , name= 'stack_output'),name = 'final_output')
else:
return tf.stack(out, axis= 1 , name = 'final_output')
def _conv(self, inputs, filters, kernel_size = 1, strides = 1, pad = 'VALID', name = 'conv'):
""" Spatial Convolution (CONV2D)
Args:
inputs : Input Tensor (Data Type : NHWC)
filters : Number of filters (channels)
kernel_size : Size of kernel
strides : Stride
pad : Padding Type (VALID/SAME) # DO NOT USE 'SAME' NETWORK BUILT FOR VALID
name : Name of the block
Returns:
conv : Output Tensor (Convolved Input)
"""
with tf.name_scope(name):
# Kernel for convolution, Xavier Initialisation
kernel = tf.Variable(tf.contrib.layers.xavier_initializer(uniform=False)([kernel_size,kernel_size, inputs.get_shape().as_list()[3], filters]), name= 'weights')
conv = tf.nn.conv2d(inputs, kernel, [1,strides,strides,1], padding=pad, data_format='NHWC')
if self.w_summary:
with tf.device('/cpu:0'):
tf.summary.histogram('weights_summary', kernel, collections = ['weight'])
return conv
def _conv_bn_relu(self, inputs, filters, kernel_size = 1, strides = 1, pad = 'VALID', name = 'conv_bn_relu'):
""" Spatial Convolution (CONV2D) + BatchNormalization + ReLU Activation
Args:
inputs : Input Tensor (Data Type : NHWC)
filters : Number of filters (channels)
kernel_size : Size of kernel
strides : Stride
pad : Padding Type (VALID/SAME) # DO NOT USE 'SAME' NETWORK BUILT FOR VALID
name : Name of the block
Returns:
norm : Output Tensor
"""
with tf.name_scope(name):
kernel = tf.Variable(tf.contrib.layers.xavier_initializer(uniform=False)([kernel_size,kernel_size, inputs.get_shape().as_list()[3], filters]), name= 'weights')
conv = tf.nn.conv2d(inputs, kernel, [1,strides,strides,1], padding='VALID', data_format='NHWC')
norm = tf.contrib.layers.batch_norm(conv, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training)
if self.w_summary:
with tf.device('/cpu:0'):
tf.summary.histogram('weights_summary', kernel, collections = ['weight'])
return norm
def _conv_block(self, inputs, numOut, name = 'conv_block'):
""" Convolutional Block
Args:
inputs : Input Tensor
numOut : Desired output number of channel
name : Name of the block
Returns:
conv_3 : Output Tensor
"""
if self.tiny:
with tf.name_scope(name):
norm = tf.contrib.layers.batch_norm(inputs, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training)
pad = tf.pad(norm, np.array([[0,0],[1,1],[1,1],[0,0]]), name= 'pad')
conv = self._conv(pad, int(numOut), kernel_size=3, strides=1, pad = 'VALID', name= 'conv')
return conv
else:
with tf.name_scope(name):
with tf.name_scope('norm_1'):
norm_1 = tf.contrib.layers.batch_norm(inputs, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training)
conv_1 = self._conv(norm_1, int(numOut/2), kernel_size=1, strides=1, pad = 'VALID', name= 'conv')
with tf.name_scope('norm_2'):
norm_2 = tf.contrib.layers.batch_norm(conv_1, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training)
pad = tf.pad(norm_2, np.array([[0,0],[1,1],[1,1],[0,0]]), name= 'pad')
conv_2 = self._conv(pad, int(numOut/2), kernel_size=3, strides=1, pad = 'VALID', name= 'conv')
with tf.name_scope('norm_3'):
norm_3 = tf.contrib.layers.batch_norm(conv_2, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training)
conv_3 = self._conv(norm_3, int(numOut), kernel_size=1, strides=1, pad = 'VALID', name= 'conv')
return conv_3
def _skip_layer(self, inputs, numOut, name = 'skip_layer'):
""" Skip Layer
Args:
inputs : Input Tensor
numOut : Desired output number of channel
name : Name of the bloc
Returns:
Tensor of shape (None, inputs.height, inputs.width, numOut)
"""
with tf.name_scope(name):
if inputs.get_shape().as_list()[3] == numOut:
return inputs
else:
conv = self._conv(inputs, numOut, kernel_size=1, strides = 1, name = 'conv')
return conv
def _residual(self, inputs, numOut, name = 'residual_block'):
""" Residual Unit
Args:
inputs : Input Tensor
numOut : Number of Output Features (channels)
name : Name of the block
"""
with tf.name_scope(name):
convb = self._conv_block(inputs, numOut)
skipl = self._skip_layer(inputs, numOut)
if self.modif:
#print('THIS ONE 5')
return tf.nn.relu(tf.add_n([convb, skipl], name = 'res_block'))
else:
#print('THIS ONE 6')
return tf.add_n([convb, skipl], name = 'res_block')
def _hourglass(self, inputs, n, numOut, name = 'hourglass'):
""" Hourglass Module
Args:
inputs : Input Tensor
n : Number of downsampling step
numOut : Number of Output Features (channels)
name : Name of the block
"""
with tf.name_scope(name):
# Upper Branch
up_1 = self._residual(inputs, numOut, name = 'up_1')
# Lower Branch
low_ = tf.contrib.layers.max_pool2d(inputs, [2,2], [2,2], padding='VALID')
low_1= self._residual(low_, numOut, name = 'low_1')
if n > 0:
low_2 = self._hourglass(low_1, n-1, numOut, name = 'low_2')
else:
low_2 = self._residual(low_1, numOut, name = 'low_2')
low_3 = self._residual(low_2, numOut, name = 'low_3')
up_2 = tf.image.resize_nearest_neighbor(low_3, tf.shape(low_3)[1:3]*2, name = 'upsampling')
if self.modif:
# Use of RELU
#print('THIS ONE 7')
return tf.nn.relu(tf.add_n([up_2,up_1]), name='out_hg')
else:
#print('THIS ONE 8')
return tf.add_n([up_2,up_1], name='out_hg')
def _argmax(self, tensor):
""" ArgMax
Args:
tensor : 2D - Tensor (Height x Width : 64x64 )
Returns:
arg : Tuple of max position
"""
resh = tf.reshape(tensor, [-1])
argmax = tf.argmax(resh, 0) # (Changed function from arg_max)
return (argmax // tensor.get_shape().as_list()[0], argmax % tensor.get_shape().as_list()[0])
def _compute_err(self, u, v):
""" Given 2 tensors compute the euclidean distance (L2) between maxima locations
Args:
u : 2D - Tensor (Height x Width : 64x64 )
v : 2D - Tensor (Height x Width : 64x64 )
Returns:
(float) : Distance (in [0,1])
"""
u_x,u_y = self._argmax(u)
v_x,v_y = self._argmax(v)
################################### HERE ###################################
################################### WHY 91??
return tf.divide(tf.sqrt(tf.square(tf.to_float(u_x - v_x)) + tf.square(tf.to_float(u_y - v_y))), tf.to_float(64)) # changed to image size
def _compute_err_entire_heatmap(self, u, v):
"""
Given 2 tensors compute the difference between them (the whole heatmap)
:param u:
:param v:
:return:
"""
#total = 0
#num_pixels = 64*64
#u = tf.reshape(u,[-1])
#v = tf.reshape(v, [-1])
#for i in range(num_pixels):
#diffs = u[i] - v[i]
#abs_diffs = abs(diff)
#total += abs_diff
#average_err = total/num_pixels
#return tf.divide(tf.reduce_sum(tf.square(tf.subtract(u,v))), num_pixels)
#return average_err
return tf.losses.mean_squared_error(u,v)
def _accur(self, pred, gtMap, num_image):
""" Given a Prediction batch (pred) and a Ground Truth batch (gtMaps),
returns one minus the mean distance.
Args:
pred : Prediction Batch (shape = num_image x 64 x 64)
gtMaps : Ground Truth Batch (shape = num_image x 64 x 64)
num_image : (int) Number of images in batch
Returns:
(float)
"""
err = tf.to_float(0)
for i in range(num_image):
### For error based on entire heatmap:
err = tf.add(err, self._compute_err_entire_heatmap(pred[i], gtMap[i]))
### For error based on maximum point:
#err = tf.add(err, self._compute_err(pred[i], gtMap[i]))
#return tf.subtract(tf.to_float(1), err/num_image)
return tf.subtract(tf.to_float(1),tf.divide(err, num_image))
# MULTI CONTEXT ATTENTION MECHANISM
# WORK IN PROGRESS DO NOT USE THESE METHODS
# BASED ON:
# Multi-Context Attention for Human Pose Estimation
# Authors: Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L. Yuille, Xiaogang Wang
# Paper: https://arxiv.org/abs/1702.07432
# GitHub Torch7 Code: https://github.com/bearpaw/pose-attention
def _bn_relu(self, inputs):
norm = tf.contrib.layers.batch_norm(inputs, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training)
return norm
def _pool_layer(self, inputs, numOut, name = 'pool_layer'):
with tf.name_scope(name):
bnr_1 = self._bn_relu(inputs)
pool = tf.contrib.layers.max_pool2d(bnr_1,[2,2],[2,2],padding='VALID')
pad_1 = tf.pad(pool, np.array([[0,0],[1,1],[1,1],[0,0]]))
conv_1 = self._conv(pad_1, numOut, kernel_size=3, strides=1, name='conv')
bnr_2 = self._bn_relu(conv_1)
pad_2 = tf.pad(bnr_2, np.array([[0,0],[1,1],[1,1],[0,0]]))
conv_2 = self._conv(pad_2, numOut, kernel_size=3, strides=1, name='conv')
upsample = tf.image.resize_nearest_neighbor(conv_2, tf.shape(conv_2)[1:3]*2, name = 'upsampling')
return upsample
def _attention_iter(self, inputs, lrnSize, itersize, name = 'attention_iter'):
with tf.name_scope(name):
numIn = inputs.get_shape().as_list()[3]
padding = np.floor(lrnSize/2)
pad = tf.pad(inputs, np.array([[0,0],[1,1],[1,1],[0,0]]))
U = self._conv(pad, filters=1, kernel_size=3, strides=1)
pad_2 = tf.pad(U, np.array([[0,0],[padding,padding],[padding,padding],[0,0]]))
sharedK = tf.Variable(tf.contrib.layers.xavier_initializer(uniform=False)([lrnSize,lrnSize, 1, 1]), name= 'shared_weights')
Q = []
C = []
for i in range(itersize):
if i ==0:
conv = tf.nn.conv2d(pad_2, sharedK, [1,1,1,1], padding='VALID', data_format='NHWC')
else:
conv = tf.nn.conv2d(Q[i-1], sharedK, [1,1,1,1], padding='SAME', data_format='NHWC')
C.append(conv)
#print('THIS ONE 9')
Q_tmp = tf.nn.sigmoid(tf.add_n([C[i], U]))
Q.append(Q_tmp)
stacks = []
for i in range(numIn):
stacks.append(Q[-1])
pfeat = tf.multiply(inputs,tf.concat(stacks, axis = 3) )
return pfeat
def _attention_part_crf(self, inputs, lrnSize, itersize, usepart, name = 'attention_part'):
with tf.name_scope(name):
if usepart == 0:
return self._attention_iter(inputs, lrnSize, itersize)
else:
partnum = self.outDim
pre = []
for i in range(partnum):
att = self._attention_iter(inputs, lrnSize, itersize)
pad = tf.pad(att, np.array([[0,0],[0,0],[0,0],[0,0]]))
s = self._conv(pad, filters=1, kernel_size=1, strides=1)
pre.append(s)
return tf.concat(pre, axis = 3)
def _residual_pool(self, inputs, numOut, name = 'residual_pool'):
with tf.name_scope(name):
#print('THIS ONE 10')
return tf.add_n([self._conv_block(inputs, numOut), self._skip_layer(inputs, numOut), self._pool_layer(inputs, numOut)])
def _rep_residual(self, inputs, numOut, nRep, name = 'rep_residual'):
with tf.name_scope(name):
out = [None]*nRep
for i in range(nRep):
if i == 0:
tmpout = self._residual(inputs,numOut)
else:
tmpout = self._residual_pool(out[i-1],numOut)
out[i] = tmpout
return out[nRep-1]
def _hg_mcam(self, inputs, n, numOut, imSize, nModual, name = 'mcam_hg'):
with tf.name_scope(name):
#------------Upper Branch
pool = tf.contrib.layers.max_pool2d(inputs,[2,2],[2,2],padding='VALID')
up = []
low = []
for i in range(nModual):
if i == 0:
if n>1:
tmpup = self._rep_residual(inputs, numOut, n -1)
else:
tmpup = self._residual(inputs, numOut)
tmplow = self._residual(pool, numOut)
else:
if n>1:
tmpup = self._rep_residual(up[i-1], numOut, n-1)
else:
tmpup = self._residual_pool(up[i-1], numOut)
tmplow = self._residual(low[i-1], numOut)
up.append(tmpup)
low.append(tmplow)
#up[i] = tmpup
#low[i] = tmplow
#----------------Lower Branch
if n>1:
#print('HERE 1')
low2 = self._hg_mcam(low[-1], n-1, numOut, int(imSize/2), nModual)
else:
#print('HERE 2')
low2 = self._residual(low[-1], numOut)
low3 = self._residual(low2, numOut)
up_2 = tf.image.resize_nearest_neighbor(low3, tf.shape(low3)[1:3]*2, name = 'upsampling')
#print('UP')
#print(up)
#print('UP_2')
#print(up_2)
#print('THIS ONE 11')
return tf.add_n([up[-1], up_2], name = 'out_hg')
def _lin(self, inputs, numOut, name = 'lin'):
l = self._conv(inputs, filters = numOut, kernel_size = 1, strides = 1)
return self._bn_relu(l)
def _graph_mcam(self, inputs):
with tf.name_scope('preprocessing'):
pad1 = tf.pad(inputs, np.array([[0,0],[3,3],[3,3],[0,0]]))
cnv1_ = self._conv(pad1, filters = 64, kernel_size = 7, strides = 1)
cnv1 = self._bn_relu(cnv1_)
r1 = self._residual(cnv1, 64)
pool1 = tf.contrib.layers.max_pool2d(r1,[2,2],[2,2],padding='VALID')
r2 = self._residual(pool1, 64)
r3 = self._residual(r2, 128)
pool2 = tf.contrib.layers.max_pool2d(r3,[2,2],[2,2],padding='VALID')
r4 = self._residual(pool2,128)
r5 = self._residual(r4, 128)
r6 = self._residual(r5, 256)
out = []
inter = []
inter.append(r6)
if self.nLow == 3:
nModual = int(16/self.nStack)
else:
nModual = int(8/self.nStack)
with tf.name_scope('stacks'):
for i in range(self.nStack):
with tf.name_scope('houglass_' + str(i+1)):
hg = self._hg_mcam(inter[i], self.nLow, self.nFeat, 64, nModual)
if i == self.nStack - 1:
ll1 = self._lin(hg, self.nFeat*2)
ll2 = self._lin(ll1, self.nFeat*2)
drop = tf.layers.dropout(ll2, rate=0.1, training = self.training)
att = self._attention_part_crf(drop, 1, 3, 0)
tmpOut = self._attention_part_crf(att, 1, 3, 1)
else:
ll1 = self._lin(hg, self.nFeat)
ll2 = self._lin(ll1, self.nFeat)
drop = tf.layers.dropout(ll2, rate=0.1, training = self.training)
if i > self.nStack // 2:
att = self._attention_part_crf(drop, 1, 3, 0)
tmpOut = self._attention_part_crf( att, 1, 3, 1)
else:
att = self._attention_part_crf(ll2, 1, 3, 0)
tmpOut = self._conv(att, filters = self.outDim, kernel_size = 1, strides = 1)
out.append(tmpOut)
if i < self.nStack - 1:
outmap = self._conv(tmpOut, filters = self.nFeat, kernel_size = 1, strides = 1)
ll3 = self._lin(outmap, self.nFeat)
tmointer = tf.add_n([inter[i], outmap, ll3])
inter.append(tmointer)
return tf.stack(out, axis= 1 , name = 'final_output')