-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmono_camera_calibration.py
79 lines (68 loc) · 2.74 KB
/
mono_camera_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import cv2 as cv
import glob
import pickle
import matplotlib.pyplot as plt
def camera_calibration():
# termination criteria
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*8,3), np.float32)
objp[:,:2] = np.mgrid[0:8,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('./pairs/right_*.jpg')
img_size = None
for fname in images:
img = cv.imread(fname)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
img_size = gray.shape[::-1]
# Find the chess board corners
ret, corners = cv.findChessboardCorners(gray, (8,6), None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
imgpoints.append(corners)
# Draw and display the corners
cv.drawChessboardCorners(img, (8,6), corners2, ret)
cv.imshow('img', img)
cv.waitKey(500)
cv.destroyAllWindows()
# do camera clibration given object point and image points
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Save the camera calibration result for later use
dist_pickle = {}
dist_pickle["mtx"] = mtx
dist_pickle["dist"] = dist
pickle.dump(dist_pickle, open("right_cam_calibration.p", "wb"))
return mtx, dist
if __name__ == '__main__':
# for calibration
# mtx, dist = camera_calibration()
# read from saved pickle file
dist_pickle = pickle.load(open("right_cam_calibration.p", "rb"))
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]
# print("mtx:",mtx)
# print("dist:",dist)
# refine the camera matrix based on a free scaling parameter using cv.getOptimalNewCameraMatrix().
img = cv.imread('./pairs/right_12.jpg')
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
# undistort the image
dst = cv.undistort(img, mtx, dist, None, newcameramtx)
# crop the image
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
# visualize the difference between distorted and undistorted images
"""
NOTE: the size of the original and undistored image are different!!
"""
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
ax1.imshow(img)
ax1.set_title("original image", fontsize=30)
ax2.imshow(dst)
ax2.set_title("undistorted image", fontsize=30)
plt.show()