-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpyplot_data.py
executable file
·71 lines (59 loc) · 1.99 KB
/
pyplot_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/bin/env python3
# A simple plot of the captured event data
# HanishKVC, 2022
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
def _vector_info(vdata: pd.Series, tag):
print("{}: min {:32.12f}, avg {:32.12f}, Max {:32.12f}".format(tag, vdata.min(), vdata.mean(), vdata.max()))
def vector_info(vdata: pd.Series, tag):
_vector_info(vdata.array, "\n{}-RawDat".format(tag))
deltas = vdata.array[1:] - vdata.array[:-1]
_vector_info(deltas, "{}-Deltas".format(tag))
FNSensor = 'sensor'
FNTime = 'time'
FNames = [ FNSensor, FNTime ]
ValueFieldsCnt = 20
for i in range(ValueFieldsCnt):
FNames.append("F{}".format(i))
df = pd.read_csv(sys.argv[1], sep=' ', names=FNames)
sensorsList = df[FNSensor].unique()
print("NumOfSensors:", sensorsList.size)
print("Sensors:", sensorsList)
heightRatios = []
for i in range(sensorsList.size):
heightRatios.append(3)
heightRatios.append(1)
fig, ax = plt.subplots(sensorsList.size*2, 1, gridspec_kw={'height_ratios':heightRatios})
print("DBUG:Axes:",ax.shape)
fig.set_size_inches(12, 6*sensorsList.size*1.5)
axi = -2
for sensor in sensorsList:
print("\nPlotting:", sensor)
axi += 2
# Extract data belonging to current sensor
bdf = df[df[FNSensor] == sensor]
print(bdf)
# Extract the fields in the data
dt = bdf[FNTime]
dv = []
for i in range(2,len(FNames)):
cv = bdf[FNames[i]]
if bdf[cv.notna()].size == 0:
break
dv.append(cv)
# Show info including Plot the fields relative to captured+saved sequence
vector_info(dt, "\tdt")
for i in range(len(dv)):
cv = dv[i]
vector_info(cv, "\t{}".format(cv.name))
ax[axi].plot(cv, label=cv.name)
ax[axi].set_title(sensor)
ax[axi].legend()
dtdiff = dt.diff()
ax[axi+1].plot(dtdiff.clip(dtdiff.min(),dtdiff.median()*1.2))
ax[axi+1].text(0.4,0.9, "<- clipped to median+ ->", transform=ax[axi+1].transAxes)
plt.tight_layout()
fig.savefig("/tmp/pyplotdata.png")
plt.show()