-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_8_code.py
223 lines (184 loc) · 7.66 KB
/
ex_8_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import datasets, transforms
xViector = range(1, 11)
lossTestViector = {'regular': [], 'norm': [], 'drop': [], 'cnn': []}
lossValidViector = {'regular': [], 'norm': [], 'drop': [], 'cnn': []}
lossTrainViector = {'regular': [], 'norm': [], 'drop': [], 'cnn': []}
batchSize = 4
transforms = transforms.Compose([
transforms.ToTensor()])
train_dataset = datasets.FashionMNIST('./data', train=True, download=True, transform=transforms)
valid_dataset = datasets.FashionMNIST('./data', train=True, download=True, transform=transforms)
test_dataset = datasets.FashionMNIST('./data', train=False, download=True, transform=transforms)
num_train = len(train_dataset)
indices = list(range(num_train))
split = int(0.8 * num_train)
train_idx, valid_idx = indices[:split], indices[split:]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchSize, sampler=train_sampler)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, sampler=valid_sampler)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
class FirstNet(nn.Module):
def __init__(self, image_size, batch_norm=False, drop=False, cnn=False):
super(FirstNet, self).__init__()
self.image_size = image_size
self.batch_norm = batch_norm
self.drop = drop
self.cnn = cnn
self.bn0 = nn.BatchNorm1d(100)
self.bn1 = nn.BatchNorm1d(50)
self.do = nn.Dropout(p=0.25)
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=1))
self.layer3 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc_cnn = nn.Linear(7 * 7 * 32, 10)
self.fc0 = nn.Linear(image_size, 100)
self.fc1 = nn.Linear(100, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
if not self.cnn:
x = x.view(-1, self.image_size)
if self.batch_norm:
x = F.relu(self.bn0(self.fc0(x)))
x = F.relu(self.bn1(self.fc1(x)))
elif self.drop:
x = F.relu(self.do(self.fc0(x)))
x = F.relu(self.do(self.fc1(x)))
elif self.cnn:
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = x.reshape(x.size(0), -1)
x = self.fc_cnn(x)
return F.log_softmax(x, dim=1)
else:
x = F.relu(self.fc0(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return F.log_softmax(x, dim=1)
def train(model, optimizer):
model.train()
for batch_idx, (data, labels) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, labels)
loss.backward()
optimizer.step()
def test(model, name):
global lossTestViector
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
lossTestViector[name].append(test_loss)
def test_valid(model, name):
global lossValidViector
model.eval()
valid_loss = 0
correct = 0
for data, target in valid_loader:
output = model(data)
valid_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
valid_loss /= len(valid_loader) * 1
print('Valid set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
valid_loss, correct, len(valid_loader) * 1,
100. * correct / (len(valid_loader) * 1)))
lossValidViector[name].append(valid_loss)
def test_train(model, name):
global lossTrainViector
model.eval()
train_loss = 0
correct = 0
for data, target in train_loader:
output = model(data)
train_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
train_loss /= len(train_loader) * batchSize
print('Train set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
train_loss, correct, len(train_loader) * batchSize,
100. * correct / (len(train_loader) * batchSize)))
lossTrainViector[name].append(train_loss)
def run_model(model, optimize, name):
for epoch in range(1, 10 + 1):
train(model, optimize)
print name + ' epoch:', epoch
test(model, name)
test_valid(model, name)
test_train(model, name)
print ' '
if epoch == 5:
if name != 'regular':
optimize = optim.SGD(model.parameters(), lr=0.008)
if epoch == 7:
if name == 'regular':
optimize = optim.SGD(model.parameters(), lr=0.003)
else:
optimize = optim.SGD(model.parameters(), lr=0.005)
def init_model(learning, batch, norm, drop, name, cnn=False):
global train_loader, valid_loader, test_loader, batchSize
batchSize = batch
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch, sampler=train_sampler)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, sampler=valid_sampler)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True)
model = FirstNet(image_size=28 * 28, batch_norm=norm, drop=drop, cnn=cnn)
if cnn:
optimizer = optim.Adam(model.parameters(), lr=learning)
else:
optimizer = optim.SGD(model.parameters(), lr=learning)
return model, optimizer
def write_result(model):
model.eval()
with open('test.pred', 'w') as the_file:
for data, target in test_loader:
output = model(data)
pre_index = np.argmax(output.cpu().data.numpy())
the_file.writelines(str(pre_index) + '\n')
def foo():
with open('real.pred', 'w') as the_real:
for data, target in test_loader:
the_real.writelines(str(target.cpu().data.numpy()) + '\n')
def iterate_all_models():
global train_loader, valid_loader, test_loader
model, optimizer = init_model(0.01, 64, False, False, 'cnn', True)
run_model(model, optimizer, 'cnn')
foo()
write_result(model)
model, optimizer = init_model(0.009, 1, False, False, 'regular')
run_model(model, optimizer, 'regular')
model, optimizer = init_model(0.015, 6, True, False, 'norm')
run_model(model, optimizer, 'norm')
model, optimizer = init_model(0.015, 6, False, True, 'drop')
run_model(model, optimizer, 'drop')
def main():
iterate_all_models()
if __name__ == "__main__":
main()