diff --git a/README.md b/README.md
index bb1529eedf..8437435c8e 100644
--- a/README.md
+++ b/README.md
@@ -65,7 +65,7 @@ following to your project pom.xml file.
This method is in the Scala API smile.write
object and serialize the model to Java
serialization format. This is handy if you want to use a model in Spark.
Alternatively, you can also use
- -
- write.xstream(model, file)
-
- which uses XStream library to serialize the model (actually any objects) to XML file.
- -To read the model back, you can use read(file)
or read.xstream(file)
, correspondingly.
You can also save a DataFrame
to an ARFF file with the method
write.arff(data, file)
. The ARFF file keeps the data type information.
If you prefer the plain csv text file, you may use the methods write.csv(data, file)
or
diff --git a/web/faq.html b/web/faq.html
index 9ff3ac0526..eac8360829 100644
--- a/web/faq.html
+++ b/web/faq.html
@@ -27,24 +27,24 @@
If you're using Gradle, add the following line into your build
file's dependencies
section:
- implementation("com.github.haifengl:smile-core:3.0.0")
+ implementation("com.github.haifengl:smile-core:3.0.1")
If you're using SBT, add the following line into your build file:
- libraryDependencies += "com.github.haifengl" % "smile-core" % "3.0.0"
+ libraryDependencies += "com.github.haifengl" % "smile-core" % "3.0.1"
For Scala API,
- libraryDependencies += "com.github.haifengl" %% "smile-scala" % "3.0.0"
+ libraryDependencies += "com.github.haifengl" %% "smile-scala" % "3.0.1"
Some algorithms rely on BLAS and LAPACK (e.g. manifold learning, @@ -74,7 +74,7 @@
- libraryDependencies += "com.github.haifengl" % "smile-mkl" % "3.0.0"
+ libraryDependencies += "com.github.haifengl" % "smile-mkl" % "3.0.1"
This method is in the Scala API smile.write
object and serialize the model to Java
serialization format. This is handy if you want to use a model in Spark.
Alternatively, you can also use
-
- write.xstream(model, file)
-
-
- which uses XStream library to serialize the model (actually any objects) to XML file.
- -To read the model back, you can use read(file)
or read.xstream(file)
, correspondingly.
Most Smile algorithms take simple double[]
as input. So you can use your favorite methods
diff --git a/web/index.html b/web/index.html
index 28e00295e7..a988fa9998 100644
--- a/web/index.html
+++ b/web/index.html
@@ -6,6 +6,9 @@
notebooks
directory.
- import $ivy.`com.github.haifengl::smile-scala:3.0.0`
+ import $ivy.`com.github.haifengl::smile-scala:3.0.1`
import scala.language.postfixOps
import org.apache.commons.csv.CSVFormat