diff --git a/README.md b/README.md index bb1529eedf..8437435c8e 100644 --- a/README.md +++ b/README.md @@ -65,7 +65,7 @@ following to your project pom.xml file. com.github.haifengl smile-core - 3.0.0 + 3.0.1 ``` @@ -73,18 +73,18 @@ For NLP, use the artifactId smile-nlp. For Scala API, please use ``` - libraryDependencies += "com.github.haifengl" %% "smile-scala" % "3.0.0" + libraryDependencies += "com.github.haifengl" %% "smile-scala" % "3.0.1" ``` For Kotlin API, add the below into the `dependencies` section of Gradle build script. ``` - implementation("com.github.haifengl:smile-kotlin:3.0.0") + implementation("com.github.haifengl:smile-kotlin:3.0.1") ``` For Clojure API, add the following dependency to your project or build file: ``` - [org.clojars.haifengl/smile "3.0.0"] + [org.clojars.haifengl/smile "3.0.1"] ``` Some algorithms rely on BLAS and LAPACK (e.g. manifold learning, @@ -113,7 +113,7 @@ Or you may simply include `smile-mkl` module in your project, which includes MKL binaries. With `smile-mkl` module in the class path, Smile will automatically switch to MKL. ``` - libraryDependencies += "com.github.haifengl" %% "smile-mkl" % "3.0.0" + libraryDependencies += "com.github.haifengl" %% "smile-mkl" % "3.0.1" ``` ## Shell @@ -149,11 +149,7 @@ to enter Kotlin REPL. ## Model Serialization Most models support the Java `Serializable` interface (all classifiers do support `Serializable` interface) so that you can use them in Spark. -For reading/writing the models in non-Java code, we suggest [XStream] -(https://github.com/x-stream/xstream) to serialize the trained models. -XStream is a simple library to serialize objects to XML and back again. -XStream is easy to use and doesn't require mappings (actually requires -no modifications to objects). [Protostuff](http://code.google.com/p/protostuff/) +[Protostuff](http://code.google.com/p/protostuff/) is a nice alternative that supports forward-backward compatibility (schema evolution) and validation. Beyond XML, Protostuff supports many other formats such as JSON, YAML, protobuf, etc. @@ -169,7 +165,7 @@ To use SmilePlot, add the following to dependencies com.github.haifengl smile-plot - 3.0.0 + 3.0.1 ``` diff --git a/web/data.html b/web/data.html index 92aff09e2d..58a472d971 100644 --- a/web/data.html +++ b/web/data.html @@ -2108,24 +2108,6 @@

Export Data and Models

This method is in the Scala API smile.write object and serialize the model to Java serialization format. This is handy if you want to use a model in Spark.

-

Alternatively, you can also use

- -
-
-
-

-    write.xstream(model, file)
-    
-
-
-
- -

which uses XStream library to serialize the model (actually any objects) to XML file.

- -

To read the model back, you can use read(file) or read.xstream(file), correspondingly.

-

You can also save a DataFrame to an ARFF file with the method write.arff(data, file). The ARFF file keeps the data type information. If you prefer the plain csv text file, you may use the methods write.csv(data, file) or diff --git a/web/faq.html b/web/faq.html index 9ff3ac0526..eac8360829 100644 --- a/web/faq.html +++ b/web/faq.html @@ -27,24 +27,24 @@

<dependency> <groupId>com.github.haifengl</groupId> <artifactId>smile-core</artifactId> - <version>3.0.0</version> + <version>3.0.1</version> </dependency>

If you're using Gradle, add the following line into your build file's dependencies section:


-    implementation("com.github.haifengl:smile-core:3.0.0")
+    implementation("com.github.haifengl:smile-core:3.0.1")
     

If you're using SBT, add the following line into your build file:


-    libraryDependencies += "com.github.haifengl" % "smile-core" % "3.0.0"
+    libraryDependencies += "com.github.haifengl" % "smile-core" % "3.0.1"
     

For Scala API,


-    libraryDependencies += "com.github.haifengl" %% "smile-scala" % "3.0.0"
+    libraryDependencies += "com.github.haifengl" %% "smile-scala" % "3.0.1"
     

Some algorithms rely on BLAS and LAPACK (e.g. manifold learning, @@ -74,7 +74,7 @@

includes MKL binaries. With `smile-mkl` module in the class path, Smile will automatically switch to MKL.


-    libraryDependencies += "com.github.haifengl" % "smile-mkl" % "3.0.0"
+    libraryDependencies += "com.github.haifengl" % "smile-mkl" % "3.0.1"
     

Model serialization

@@ -85,15 +85,6 @@

Model serialization

This method is in the Scala API smile.write object and serialize the model to Java serialization format. This is handy if you want to use a model in Spark.

-

Alternatively, you can also use

-

-    write.xstream(model, file)
-    
- -

which uses XStream library to serialize the model (actually any objects) to XML file.

- -

To read the model back, you can use read(file) or read.xstream(file), correspondingly.

-

Data Format

Most Smile algorithms take simple double[] as input. So you can use your favorite methods diff --git a/web/index.html b/web/index.html index 28e00295e7..a988fa9998 100644 --- a/web/index.html +++ b/web/index.html @@ -6,6 +6,9 @@

Latest News