-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathobject_detection.py
161 lines (146 loc) · 6.01 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import cv2
import numpy as np
import onnxruntime as ort
class ObjectDetection:
def __init__(
self,
onnx_path="./pretrained_models/yolov4-tiny.onnx",
coco_names_path="./pretrained_models/coco.names",
device="cpu",
confidence_threshold=0.5,
choose_classes=["person"],
):
self.onnx_path = onnx_path
self.coco_names_path = coco_names_path
self.confidence_threshold = confidence_threshold
self.choose_classes = np.array(choose_classes)
self.device = device
self.nms_threshold = (
0
if self.confidence_threshold - 0.1 < 0
else self.confidence_threshold - 0.1
)
with open(self.coco_names_path, "r") as f:
self.class_names = f.readlines()
self.class_names = np.array(
[cls.replace("\n", "") for cls in self.class_names]
)
if self.device.lower() == "cpu":
if ort.get_device() == "CUDA":
print("CUDA available, if you want to switch your device into CUDA")
self.ort_session = ort.InferenceSession(
self.onnx_path, providers=["CPUExecutionProvider"]
)
elif self.device.lower() == "cuda":
self.ort_session = ort.InferenceSession(
self.onnx_path,
providers=["TensorrtExecutionProvider", "CUDAExecutionProvider"],
)
else:
raise ValueError("Choose between CPU or CUDA!")
self.model_height, self.model_width = self.ort_session.get_inputs()[0].shape[
2:4
]
def predict_img(self, img):
image = self._preprocessing_img(img)
input_onnx = self.ort_session.get_inputs()[0].name
output_onnx = self.ort_session.run(None, {input_onnx: image})
postprocess_onnx = self._postprocessing_onnx(output_onnx)
result_outputs = self._postprocessing_result(postprocess_onnx)
return result_outputs
def _preprocessing_img(self, img):
image = cv2.resize(
img, (self.model_width, self.model_height), interpolation=cv2.INTER_LINEAR
)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = np.transpose(image, (2, 0, 1)).astype(np.float32)
image = np.expand_dims(image, axis=0)
image /= 255.0
return image
def _postprocessing_onnx(self, output_onnx):
box_array = output_onnx[0]
confs = output_onnx[1]
num_classes = confs.shape[2]
box_array = box_array[:, :, 0]
max_conf = np.max(confs, axis=2)
max_id = np.argmax(confs, axis=2)
bboxes_batch = []
for i in range(box_array.shape[0]):
argwhere = max_conf[i] > self.confidence_threshold
l_box_array = box_array[i, argwhere, :]
l_max_conf = max_conf[i, argwhere]
l_max_id = max_id[i, argwhere]
bboxes = []
for j in range(num_classes):
cls_argwhere = l_max_id == j
ll_box_array = l_box_array[cls_argwhere, :]
ll_max_conf = l_max_conf[cls_argwhere]
ll_max_id = l_max_id[cls_argwhere]
keep = self._nmsbbox(ll_box_array, ll_max_conf, self.nms_threshold)
if keep.size > 0:
ll_box_array = ll_box_array[keep, :]
ll_max_conf = ll_max_conf[keep]
ll_max_id = ll_max_id[keep]
for k in range(ll_box_array.shape[0]):
bboxes.append(
[
ll_box_array[k, 0],
ll_box_array[k, 1],
ll_box_array[k, 2],
ll_box_array[k, 3],
ll_max_conf[k],
ll_max_conf[k],
ll_max_id[k],
]
)
bboxes_batch.append(bboxes)
return np.array(bboxes_batch, dtype=np.float16)
def _postprocessing_result(self, postprocess_onnx):
result_outputs = []
for x1, y1, x2, y2, _, confidence, label in postprocess_onnx[0]:
if self.class_names[int(label)] not in self.choose_classes:
continue
x1 = int(x1 * self.model_width)
y1 = int(y1 * self.model_height)
x2 = int(x2 * self.model_width)
y2 = int(y2 * self.model_height)
result_outputs.append(
{
self.class_names[int(label)].title(): {
"confidence": float(f"{confidence:.2f}"),
"bounding_box": [x1, y1, x2, y2],
}
}
)
return np.array(result_outputs)
def _nmsbbox(self, bbox, max_confidence, min_mode=False):
x1 = bbox[:, 0]
y1 = bbox[:, 1]
x2 = bbox[:, 2]
y2 = bbox[:, 3]
areas = (x2 - x1) * (y2 - y1)
order = max_confidence.argsort()[::-1]
keep = []
while order.size > 0:
idx_self = order[0]
idx_other = order[1:]
keep.append(idx_self)
xx1 = np.maximum(x1[idx_self], x1[idx_other])
yy1 = np.maximum(y1[idx_self], y1[idx_other])
xx2 = np.minimum(x2[idx_self], x2[idx_other])
yy2 = np.minimum(y2[idx_self], y2[idx_other])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
if min_mode:
over = inter / np.minimum(areas[order[0]], areas[order[1:]])
else:
over = inter / (areas[order[0]] + areas[order[1:]] - inter)
inds = np.where(over <= self.nms_threshold)[0]
order = order[inds + 1]
return np.array(keep, dtype=np.uint8)
if __name__ == "__main__":
object_detection = ObjectDetection()
input = cv2.imread("./sample_image/testing.png")
output = object_detection.predict_img(input)
print(output)