Skip to content

Latest commit

 

History

History
96 lines (70 loc) · 3.94 KB

README.md

File metadata and controls

96 lines (70 loc) · 3.94 KB
███████╗██╗   ██╗██████╗     ██╗    ██╗██╗███████╗
██╔════╝██║   ██║██╔══██╗    ██║    ██║██║╚══███╔╝
███████╗██║   ██║██████╔╝    ██║ █╗ ██║██║  ███╔╝ 
╚════██║██║   ██║██╔══██╗    ██║███╗██║██║ ███╔╝  
███████║╚██████╔╝██████╔╝    ╚███╔███╔╝██║███████╗
╚══════╝ ╚═════╝ ╚═════╝      ╚══╝╚══╝ ╚═╝╚══════╝

A recon tool that uses AI to predict subdomains. Then returns those that resolve.

Installation

pip install subwiz

Recommended Use

Use subfinder ❤️ to find subdomains from passive sources:

subfinder -d example.com -o subdomains.txt

Seed subwiz with these subdomains:

subwiz -i subdomains.txt

Supported Switches

usage: cli.py [-h] -i INPUT_FILE [-o OUTPUT_FILE] [-n NUM_PREDICTIONS]
              [--no-resolve] [--force-download] [-t TEMPERATURE]
              [-d {auto,cpu,cuda,mps}] [-q MAX_NEW_TOKENS]
              [--resolution_concurrency RESOLUTION_LIM]

options:
  -h, --help            show this help message and exit
  -i INPUT_FILE, --input-file INPUT_FILE
                        file containing new-line-separated subdomains.
                        (default: None)
  -o OUTPUT_FILE, --output-file OUTPUT_FILE
                        output file to write new-line separated subdomains to.
                        (default: None)
  -n NUM_PREDICTIONS, --num_predictions NUM_PREDICTIONS
                        number of subdomains to predict. (default: 500)
  --no-resolve          do not resolve the output subdomains. (default: False)
  --force-download      download model and tokenizer files, even if cached.
                        (default: False)
  -t TEMPERATURE, --temperature TEMPERATURE
                        add randomness to the model, recommended ≤ 0.3)
                        (default: 0.0)
  -d {auto,cpu,cuda,mps}, --device {auto,cpu,cuda,mps}
                        hardware to run the transformer model on. (default:
                        auto)
  -q MAX_NEW_TOKENS, --max_new_tokens MAX_NEW_TOKENS
                        maximum length of predicted subdomains in tokens.
                        (default: 10)
  --resolution_concurrency RESOLUTION_LIM
                        number of concurrent resolutions. (default: 128)

In Python

Use subwiz in Python, with the same inputs as the command line interface.

import subwiz

known_subdomains = ['test1.example.com', 'test2.example.com']
new_subdomains = subwiz.run(input_domains=known_subdomains)

Model

Use the --no-resolve flag to inspect model outputs without checking if they resolve.

Architecture

Subwiz is a ultra-lightweight transformer model based on nanoGPT ❤️:

  • 17.3M parameters.
  • Trained on 26M tokens, lists of subdomains from passive sources.
  • Tokenizer trained on same lists of subdomains (8192 tokens).

Hugging Face

The model is saved in Hugging Face as HadrianSecurity/subwiz. It is downloaded when you first run subwiz.

Inference

Typically, generative transformer models (e.g. ChatGPT) predict a single output sequence. Subwiz predicts the N most likely sequences using a beam search algorithm.

Diagram of the inference algorithm

Beam algorithm to predict the N most likely outputs from a generative transformer model.