- Update dataloader to perform grid split of data
- Add learning rate scheduler (apopt from AlphaPeptDeep)
- Update/Test different loss functions
- Optimize inference and data types with torchao
- Add eval metrics to WandB logging
- Move sampling.py into codebase
- Add a raw mzML/tdf parser
- Obtain another dataset for testing
- Benchmark if time
- Dataloaders for MS1+MS2 dataImplement base diffusion model from PyTorchAdapter layer for MS data to input dimensions of aboveMaybe custom training loopEval code