-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest-adapt.py
73 lines (58 loc) · 2.69 KB
/
test-adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import save_images
from util import html
import numpy as np
from PIL import Image
import md
from torchvision.transforms import functional as F
if __name__ == '__main__':
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.display_id = -1 # no visdom display
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
model.setup(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
Data_root_3d = './dataset/'
# nct_3d_samp = md.read_image(Data_root_3d + 'ZS10307488/nfct.nii.gz')
# nct_3d_samp = md.read_image(Data_root_3d + 'ZS18111863/t1_wfi_wb_IP_Tra_9.nii') #384 * 549
nct_3d_samp = md.read_image(Data_root_3d + 'ZS18158187/T1_WFI_WB_IP_Tra_8.nii') # 384 * 549
# for j in range(4): # crop 4 times for the randomcrop in training
# opt.test_crop_mode == str(j)
for i, data in enumerate(dataset):
# if i >= opt.how_many:
if i >= dataset.__len__():
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
if i % 5 == 0:
print('processing (%04d)-th image... %s' % (i, img_path))
# save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
'''
save to .mhd
'''
out_slice_np = visuals['fake_B'].squeeze(0).cpu().numpy()
out_slice_PIL = Image.fromarray(out_slice_np[0])
out_slice_np = np.array( F.resize(out_slice_PIL, (512, 512), 3) )[np.newaxis, :]
# out_slice_np = np.array(F.resize(out_slice_PIL, (384, 549), 3))[np.newaxis, :]
out_slice_np = np.pad(out_slice_np[:, 64: 448, :], ((0, 0), (0, 0), (18, 19)), 'constant', constant_values=-1) # recover to(1*384*548)
if i == 0:
test_output_array = out_slice_np
else:
test_output_array = np.concatenate((test_output_array, out_slice_np), axis=0)
nct_3d_samp.from_numpy(test_output_array)
# md.write_image(mr_3d_samp, webpage.web_dir + '/fake_nfct_' + img_path[0].split('_')[-2] + '.mhd')
md.write_image(nct_3d_samp, webpage.web_dir + '/' + opt.name + '.mhd')
webpage.save()