-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathFUSION.assoc_test.R
391 lines (342 loc) · 16.2 KB
/
FUSION.assoc_test.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
suppressMessages(library('plink2R'))
suppressMessages(library("optparse"))
option_list = list(
make_option("--sumstats", action="store", default=NA, type='character',
help="Path to summary statistics (must have SNP and Z column headers) [required]"),
make_option("--out", action="store", default=NA, type='character',
help="Path to output files [required]"),
make_option("--weights", action="store", default=NA, type='character',
help="File listing molecular weight RDat files (must have columns WGT,ID,CHR,P0,P1) [required]"),
make_option("--weights_dir", action="store", default=NA, type='character',
help="Path to directory where weight files (WGT column) are stored [required]"),
make_option("--ref_ld_chr", action="store", default=NA, type='character',
help="Prefix to reference LD files in binary PLINK format by chromosome [required]"),
make_option("--force_model", action="store", default=NA, type='character',
help="Force specific predictive model to be used, no flag (default) means select most significant cross-val. Options: blup,lasso,top1,enet"),
make_option("--caviar", action="store_true", default=FALSE,
help="Generate eCAVIAR-format (Z,LD) files for fine-mapping [default off]"),
make_option("--jlim", action="store_true", default=FALSE,
help="NOT IMPLEMENTED: Compute JLIM statistic [Chun et al Nat Genet 2017].\nRequires jlimR library installed. [default: %default]"),
make_option("--max_impute", action="store", default=0.5 , type='double',
help="Maximum fraction of SNPs allowed to be missing per gene (will be imputed using LD). [default: %default]"),
make_option("--min_r2pred", action="store", default=0.7 , type='double',
help="Minimum average LD-based imputation accuracy allowed for expression weight SNP Z-scores. [default: %default]"),
make_option("--perm", action="store", default=0, type='integer',
help="Maximum number of permutations to perform for each feature test [default: 0/off]"),
make_option("--perm_minp", action="store", default=0.05, type='double',
help="Minimum p-value for which to initiate permutation test, if --perm flag present [default: %default]"),
make_option("--chr", action="store", default=NA, type='character',
help="Chromosome to analyze, currently only single chromosome analyses are performed [required]"),
make_option("--coloc_P", action="store", default=NA, type='double',
help="P-value below which to compute COLOC statistic [Giambartolomei et al PLoS Genet 2013]\nRequires coloc library installed and --GWASN flag. [default NA/off]"),
make_option("--GWASN", action="store", default=NA, type='integer',
help="Total GWAS/sumstats sample size for inference of standard GWAS effect size."),
make_option("--PANELN", action="store", default=NA, type='character',
help="File listing sample size for each panel for inference of standard QTL effect size, cross-referenced against 'PANEL' column in weights file")
)
opt = parse_args(OptionParser(option_list=option_list))
allele.qc = function(a1,a2,ref1,ref2) {
a1 = toupper(a1)
a2 = toupper(a2)
ref1 = toupper(ref1)
ref2 = toupper(ref2)
ref = ref1
flip = ref
flip[ref == "A"] = "T"
flip[ref == "T"] = "A"
flip[ref == "G"] = "C"
flip[ref == "C"] = "G"
flip1 = flip
ref = ref2
flip = ref
flip[ref == "A"] = "T"
flip[ref == "T"] = "A"
flip[ref == "G"] = "C"
flip[ref == "C"] = "G"
flip2 = flip;
snp = list()
snp[["keep"]] = !((a1=="A" & a2=="T") | (a1=="T" & a2=="A") | (a1=="C" & a2=="G") | (a1=="G" & a2=="C"))
snp[["keep"]][ a1 != "A" & a1 != "T" & a1 != "G" & a1 != "C" ] = F
snp[["keep"]][ a2 != "A" & a2 != "T" & a2 != "G" & a2 != "C" ] = F
snp[["flip"]] = (a1 == ref2 & a2 == ref1) | (a1 == flip2 & a2 == flip1)
return(snp)
}
# Load in summary stats
sumstat = read.table(opt$sumstats,head=T,as.is=T)
# Load in list of weights
# TODO : TEST FOR NO HEADER HERE
wgtlist = read.table(opt$weights,head=T,as.is=T)
wgtlist = wgtlist[ as.character(wgtlist$CHR) == as.character(opt$chr) , ]
chr = unique(wgtlist$CHR)
N = nrow(wgtlist)
out.tbl = data.frame( "PANEL" = rep(NA,N) , "FILE" = character(N) , "ID" = character(N) , "CHR" = numeric(N) , "P0" = character(N) , "P1" = character(N) ,"HSQ" = numeric(N) , "BEST.GWAS.ID" = character(N) , "BEST.GWAS.Z" = numeric(N) , "EQTL.ID" = character(N) , "EQTL.R2" = numeric(N) , "EQTL.Z" = numeric(N) , "EQTL.GWAS.Z" = numeric(N) , "NSNP" = numeric(N) , "NWGT" = numeric(N) , "MODEL" = character(N) , "MODELCV.R2" = character(N) , "MODELCV.PV" = character(N) , "TWAS.Z" = numeric(N) , "TWAS.P" = numeric(N) , stringsAsFactors=FALSE )
if ( opt$jlim ) {
suppressMessages(library('jlimR'))
jlim.r2res = 0.8
jlim.thresholdingP = 0.1
out.tbl$JLIM.P = numeric(N)
out.tbl$JLIM.STAT = numeric(N)
}
if ( !is.na(opt$coloc_P) ) {
if ( is.na(opt$GWASN) || opt$GWASN < 1 ) {
cat("ERROR : --GWASN flag required to be positive integer for COLOC analysis\n")
q()
}
if ( sum(names(wgtlist) == "N") == 0 ) {
if ( sum(names(wgtlist) == "PANEL") == 0 || is.na(opt$PANELN) ) {
cat("ERROR : 'N' field needed in weights file or 'PANEL' column and --PANELN flag required for COLOC analysis\n")
q()
} else {
paneln = read.table(opt$PANELN,as.is=T,head=T,sep='\t')
m = match( wgtlist$PANEL , paneln$PANEL )
wgtlist$N = paneln$N[ m ]
}
}
suppressMessages(library('coloc'))
out.tbl$COLOC.PP0 = as.numeric(rep(NA,N))
out.tbl$COLOC.PP1 = as.numeric(rep(NA,N))
out.tbl$COLOC.PP2 = as.numeric(rep(NA,N))
out.tbl$COLOC.PP3 = as.numeric(rep(NA,N))
out.tbl$COLOC.PP4 = as.numeric(rep(NA,N))
}
if ( !is.na(opt$perm) && opt$perm > 0 ) {
out.tbl$PERM.PV = numeric(N)
out.tbl$PERM.N = numeric(N)
out.tbl$PERM.ANL_PV = numeric(N)
permz = qnorm(opt$perm_minp/2,lower.tail=F)
}
# Load in reference data
genos = read_plink(paste(opt$ref_ld_chr,chr,sep=''),impute="avg")
# Match summary data to input, record NA where summary data is missing
m = match( genos$bim[,2] , sumstat$SNP )
sum.missing = is.na(m)
sumstat = sumstat[m,]
sumstat$SNP = genos$bim[,2]
sumstat$A1[ sum.missing ] = genos$bim[sum.missing,5]
sumstat$A2[ sum.missing ] = genos$bim[sum.missing,6]
# QC / allele-flip the input and output
qc = allele.qc( sumstat$A1 , sumstat$A2 , genos$bim[,5] , genos$bim[,6] )
# Flip Z-scores for mismatching alleles
sumstat$Z[ qc$flip ] = -1 * sumstat$Z[ qc$flip ]
sumstat$A1[ qc$flip ] = genos$bim[qc$flip,5]
sumstat$A2[ qc$flip ] = genos$bim[qc$flip,6]
# Remove strand ambiguous SNPs (if any)
if ( sum(!qc$keep) > 0 ) {
genos$bim = genos$bim[qc$keep,]
genos$bed = genos$bed[,qc$keep]
sumstat = sumstat[qc$keep,]
}
# TODO: WARNING if too many NAs in summary stats
FAIL.ctr = 0
## For each wgt file:
for ( w in 1:nrow(wgtlist) ) {
#cat( unlist(wgtlist[w,]) , '\n' )
# Load weights
wgt.file = paste(opt$weights_dir,"/",wgtlist$WGT[w],sep='')
load(wgt.file)
# Remove NAs (these should not be here)
wgt.matrix[is.na(wgt.matrix)] = 0
# Match up the SNPs and weights
m = match( snps[,2] , genos$bim[,2] )
m.keep = !is.na(m)
snps = snps[m.keep,]
wgt.matrix = wgt.matrix[m.keep,,drop=F]
cur.genos = scale(genos$bed[,m[m.keep]])
cur.bim = genos$bim[m[m.keep],]
# Flip WEIGHTS for mismatching alleles
qc = allele.qc( snps[,5] , snps[,6] , cur.bim[,5] , cur.bim[,6] )
wgt.matrix[qc$flip,] = -1 * wgt.matrix[qc$flip,]
cur.FAIL = FALSE
# Match up the SNPs and the summary stats
m = match(cur.bim[,2] , sumstat$SNP)
cur.Z = sumstat$Z[m]
# which rows have rsq
row.rsq = grep( "rsq" , rownames(cv.performance) )
# which rows have p-values
row.pval = grep( "pval" , rownames(cv.performance) )
# Identify the best model
if ( !is.na(opt$force_model) ) {
mod.best = which( colnames(wgt.matrix) == opt$force_model )
if ( length(mod.best) == 0 ) {
cat( "WARNING : --force_model" , mod.best ,"does not exist for", unlist(wgtlist[w,]) , "\n")
cur.FAIL = TRUE
}
} else {
# get the most significant model
mod.best = which.min(apply(cv.performance[row.pval,,drop=F],2,min,na.rm=T))
}
if ( length(mod.best) == 0 ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , " did not have a predictive model ... skipping entirely\n" )
FAIL.ctr = FAIL.ctr + 1
next
}
if ( sum(wgt.matrix[, mod.best] != 0) == 0 ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , names(cv.performance)[ mod.best ] , "had", length(cur.Z) , "overlapping SNPs, but none with non-zero expression weights, try more SNPS or a different model\n")
cur.FAIL = TRUE
}
# if this is a top1 model, clear out all the other weights
if ( substr( (colnames(cv.performance))[ mod.best ],1,4) == "top1" ) wgt.matrix[ -which.max(wgt.matrix[,mod.best]^2) , mod.best] = 0
# Compute LD matrix
if ( length(cur.Z) == 0 ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , " had no overlapping SNPs\n")
cur.FAIL = TRUE
out.tbl$NSNP[w] = NA
} else if ( !cur.FAIL ) {
cur.LD = t(cur.genos) %*% cur.genos / (nrow(cur.genos)-1)
out.tbl$NSNP[w] = nrow(cur.LD)
cur.miss = is.na(cur.Z)
# Impute missing Z-scores
if ( sum(cur.miss) != 0 ) {
if ( sum(!cur.miss) == 0 ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , "had no overlapping GWAS Z-scores, skipping this gene\n")
cur.FAIL = TRUE
} else if ( mean(cur.miss) > opt$max_impute ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , "had" , sum(cur.miss) , "/" , length(cur.miss) , "non-overlapping GWAS Z-scores, skipping this gene.\n")
cur.FAIL = TRUE
} else {
cur.wgt = cur.LD[cur.miss,!cur.miss] %*% solve( cur.LD[!cur.miss,!cur.miss] + 0.1 * diag(sum(!cur.miss)) )
cur.impz = cur.wgt %*% cur.Z[!cur.miss]
cur.r2pred = diag( cur.wgt %*% cur.LD[!cur.miss,!cur.miss] %*% t(cur.wgt) )
cur.Z[cur.miss] = cur.impz / sqrt(cur.r2pred)
all.r2pred = rep(1,length(cur.Z))
all.r2pred[ cur.miss ] = cur.r2pred
if ( sum(is.na(all.r2pred)) != 0 ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , "had missing GWAS Z-scores that could not be imputed, skipping this gene.\n" )
cur.FAIL = TRUE
} else if ( mean( all.r2pred[ wgt.matrix[,mod.best] != 0 ] ) < opt$min_r2pred ) {
cat( "WARNING : " , unlist(wgtlist[w,]) , "had mean GWAS Z-score imputation r2 of" , mean( all.r2pred[ wgt.matrix[,mod.best] != 0 ] ) , "at expression weight SNPs, skipping this gene.\n")
cur.FAIL = TRUE
}
}
}
if ( !cur.FAIL ) {
# Compute TWAS Z-score
cur.twasz = wgt.matrix[,mod.best] %*% cur.Z
cur.twasr2pred = wgt.matrix[,mod.best] %*% cur.LD %*% wgt.matrix[,mod.best]
if ( cur.twasr2pred > 0 ) {
cur.twas = cur.twasz / sqrt(cur.twasr2pred)
# Perform the permutation test
if ( !is.na(opt$perm) && opt$perm > 0 && cur.twas^2 > permz^2 ) {
perm.twas = rep(NA,opt$perm)
perm.pval = NA
for ( i in 1:opt$perm ) {
perm.wgt = wgt.matrix[ sample( nrow(wgt.matrix) ) , mod.best ]
perm.twas[i] = perm.wgt %*% cur.Z / sqrt( perm.wgt %*% cur.LD %*% perm.wgt )
# adaptive permutation, stop if 10 instances were observed
# see: Che et al. PMC4070098 for derivations
if ( sum(perm.twas[1:i]^2 > cur.twas[1]^2) > 10 ) {
perm.pval = (sum(perm.twas[1:i]^2 > cur.twas[1]^2) + 1) / (i+1)
perm.N = i+1
break()
}
}
if ( is.na(perm.pval) ) {
perm.pval = sum(perm.twas^2 > cur.twas[1]^2) / opt$perm
perm.N = opt$perm
# also estimate analytical p-value based on mu+sd of the null
anal.zscore = ( cur.twas[1] - 0 ) / sd( perm.twas , na.rm=T )
} else {
anal.zscore = NA
}
out.tbl$PERM.PV[w] = perm.pval
out.tbl$PERM.N[w] = perm.N
out.tbl$PERM.ANL_PV[w] = 2*pnorm(abs(anal.zscore),lower.tail=F)
}
} else {
cur.FAIL=T
cat( "WARNING : " , unlist(wgtlist[w,]) , " had zero predictive accuracy, try a different model.\n")
}
}
}
# populate the output
if ( sum(names(wgtlist) == "PANEL") == 1 ) out.tbl$PANEL[w] = wgtlist$PANEL[w]
out.tbl$FILE[w] = wgt.file
out.tbl$CHR[w] = wgtlist$CHR[w]
out.tbl$P0[w] = wgtlist$P0[w]
out.tbl$P1[w] = wgtlist$P1[w]
out.tbl$ID[w] = wgtlist$ID[w]
if ( exists("hsq") ) {
out.tbl$HSQ[w] = hsq[1]
}
out.tbl$MODEL[w] = colnames( cv.performance )[ mod.best ]
out.tbl$MODELCV.R2[w] = paste(format(cv.performance[row.rsq,mod.best],digits=2,trim=T),collapse=',')
out.tbl$MODELCV.PV[w] = paste(format(cv.performance[row.pval,mod.best],digits=2,trim=T),collapse=',')
eqtlmod = colnames(wgt.matrix) == "top1"
topeqtl = which.max( wgt.matrix[,eqtlmod]^2 )
if ( cur.FAIL || sum(eqtlmod) == 0 || length(topeqtl) == 0 || is.na(topeqtl) ) {
out.tbl$EQTL.ID[w] = NA
out.tbl$EQTL.R2[w] = NA
out.tbl$EQTL.Z[w] = NA
out.tbl$EQTL.GWAS.Z[w] = NA
} else {
out.tbl$EQTL.ID[w] = rownames(wgt.matrix)[topeqtl]
out.tbl$EQTL.R2[w] = cv.performance[1,eqtlmod]
out.tbl$EQTL.Z[w] = wgt.matrix[ topeqtl , eqtlmod ]
out.tbl$EQTL.GWAS.Z[w] = cur.Z[ topeqtl ]
# write CAVIAR inputs
if( opt$caviar ) {
cur.Z = as.matrix(cur.Z,ncol=1)
rownames(cur.Z) = snps[,2]
cav.out = paste( opt$out , wgtlist$ID[w] , "CAVIAR" , sep='.' )
write.table( format(cur.LD,digits=3) , quote=F , col.names=F , row.names=F , file = paste( cav.out , ".LD" , sep='' ) )
write.table( format(wgt.matrix[,eqtlmod],digits=3) , quote=F , col.names=F , sep='\t' , file = paste( cav.out , ".EQTL.Z" , sep='') )
write.table( format(cur.Z,digits=3) , quote=F , col.names=F , sep='\t' , file = paste( cav.out , ".GWAS.Z" , sep='') )
}
# perform JLIM test
if ( opt$jlim ) {
jlim.lambda.t = jlimR:::calc.stat( cur.Z , wgt.matrix[,eqtlmod] , cur.LD , cur.LD , jlim.r2res )
# TODO : Sample permuted eQTL Z-scores from the MvN using LD matrix
jlim.nulldist = jlimR:::perm.test( cur.Z , wgt.matrix[,eqtlmod], permmat, cur.LD, cur.LD, jlim.thresholdingP, jlim.r2res, jlim.lambda.t)
permP = sum(jlim.nulldist >= jlim.lambda.t, na.rm = TRUE)/sum(!is.na(NULLDIST))
out.tbl$JLIM.STAT[w] = jlim.lambda.t
out.tbl$JLIM.P[w] = permP
}
}
topgwas = which.max( cur.Z^2 )
if ( !cur.FAIL && length(topgwas) != 0 && !is.na(topgwas) ) {
out.tbl$BEST.GWAS.ID[w] = snps[ topgwas , 2 ]
out.tbl$BEST.GWAS.Z[w] = cur.Z[ topgwas ]
} else {
out.tbl$BEST.GWAS.ID[w] = NA
out.tbl$BEST.GWAS.Z[w] = NA
}
if ( !cur.FAIL ) {
out.tbl$NWGT[w] = sum( wgt.matrix[,mod.best] != 0 )
out.tbl$TWAS.Z[w] = cur.twas
out.tbl$TWAS.P[w] = 2*(pnorm( abs(out.tbl$TWAS.Z[w]) , lower.tail=F))
} else {
out.tbl$TWAS.Z[w] = NA
out.tbl$TWAS.P[w] = NA
}
# perform COLOC test
if ( !is.na(opt$coloc_P) && !is.na(out.tbl$TWAS.Z[w]) && out.tbl$TWAS.P[w] < opt$coloc_P && !is.na(wgtlist$N[w]) ) {
b1 = wgt.matrix[,eqtlmod] / sqrt(wgtlist$N[w])
b2 = cur.Z / sqrt(opt$GWASN)
vb1 = rep(1/wgtlist$N[w],length(b1))
vb2 = rep(1/opt$GWASN,length(b2))
err = suppressMessages(capture.output(clc <- coloc.abf(dataset1=list(beta=b1,varbeta=vb1,type="quant",N=wgtlist$N[w],sdY=1),dataset2=list(beta=b2,varbeta=vb2,type="quant",N=opt$GWASN,sdY=1))))
out.tbl$COLOC.PP0[w] = round(clc$summary[2],3)
out.tbl$COLOC.PP1[w] = round(clc$summary[3],3)
out.tbl$COLOC.PP2[w] = round(clc$summary[4],3)
out.tbl$COLOC.PP3[w] = round(clc$summary[5],3)
out.tbl$COLOC.PP4[w] = round(clc$summary[6],3)
}
if ( cur.FAIL ) FAIL.ctr = FAIL.ctr + 1
}
cat("Analysis completed.\n")
cat("NOTE:",FAIL.ctr,"/",nrow(wgtlist),"genes were skipped\n")
if ( FAIL.ctr / nrow(wgtlist) > 0.1 ) {
cat("If a large number of genes were skipped, verify that your GWAS Z-scores, expression weights, and LDREF data use the same SNPs (or nearly)\n")
cat("Or consider pre-imputing your summary statistics to the LDREF markers using summary-imputation software such as [https://github.com/bogdanlab/fizi]\n")
}
# compute p-value
#out.tbl$TWAS.P = 2*(pnorm( abs(out.tbl$TWAS.Z) , lower.tail=F))
# WRITE MHC TO SEPARATE FILE
mhc = as.numeric(out.tbl$CHR) == 6 & as.numeric(out.tbl$P0) > 26e6 & as.numeric(out.tbl$P1) < 34e6
out.tbl$P0 = apply( as.matrix(out.tbl$P0) , 1 , toString )
out.tbl$P1 = apply( as.matrix(out.tbl$P1) , 1 , toString )
if ( sum( mhc ) > 0 ) {
cat("Results in the MHC are written to",paste(opt$out,".MHC",sep=''),", evaluate with caution due to complex LD structure\n")
write.table( format( out.tbl[mhc,] , digits=3 ) , quote=F , row.names=F , sep='\t' , file=paste(opt$out,".MHC",sep='') )
}
write.table( format( out.tbl[!mhc,] , digits=3 ) , quote=F , row.names=F , sep='\t' , file=opt$out )