-
Notifications
You must be signed in to change notification settings - Fork 1
/
train-css.py
417 lines (349 loc) · 16.1 KB
/
train-css.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
"""
This is a re-implementation for CSS in CVPR 2020.
Note that this code does not support test in VQA datasets.
"""
import os
import sys
import json
import random
import argparse
from tqdm import tqdm
from pprint import pprint
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import utils.utils as utils
import utils.config as config
from utils.dataset import Dictionary, VQAFeatureDataset
import modules.base_model as base_model
from utils.losses import LearnedMixin, LearnedMixinH, FocalLoss, Plain
seed = 1111
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = True
_keep_qtype = True
_topq = 1 # number of masked words
_topv = -1 # number of masked objects
_top_hint = 9 # number of hint objects
_qvp = 5 # ratio of q_bias and v_bias
_mode = 'q_v_debias' # ['q_debias', 'v_debias', 'q_v_debias']
def compute_score_with_logits(logits, labels):
_, log_index = logits.max(dim=1, keepdim=True)
scores = labels.gather(dim=1, index=log_index)
return scores
def saved_for_eval(dataloader, results, question_ids, answer_preds):
""" Save as a format accepted by the evaluation server. """
_, answer_ids = answer_preds.max(dim=1)
answers = [dataloader.dataset.label2ans[i] for i in answer_ids]
for q, a in zip(question_ids, answers):
entry = {
'question_id': q.item(),
'answer': a,
}
results.append(entry)
return results
def loss_and_back(loss_fn, model, optim, pred, mask, a, a_s, a_m, dict_args, compute_grad=None):
""" The loss and optim are folded here. """
if config.use_miu:
dict_args['miu'] = a_s
dict_args['mask'] = a_m
loss = loss_fn(pred, a, **dict_args)
if config.use_mask:
loss_mask = F.binary_cross_entropy_with_logits(mask, a_m)
loss += loss_mask
grad = None # for possible gradient computation
if compute_grad is not None:
grad = torch.autograd.grad((pred * (a > 0).float()).sum(),
compute_grad, create_graph=True)[0]
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
return loss, grad
def q_debias(model, optim, loss_fn, dataset, v, q, a, a_m, a_s, bias, type_mask, notype_mask):
sen_mask = type_mask if _keep_qtype else notype_mask
# first train
pred, mask, hidden, word_emb = model(v, q)
dict_args = {'bias': bias, 'hidden': hidden}
loss1, word_grad = loss_and_back(loss_fn, model, optim,
pred, mask, a, a_s, a_m, dict_args, compute_grad=word_emb)
batch_score = compute_score_with_logits(pred, a.data)
# second train
word_grad_cam = word_grad.sum(dim=2)
word_grad_cam_sigmoid = torch.exp(word_grad_cam * sen_mask)
word_grad_cam_sigmoid = word_grad_cam_sigmoid * sen_mask
word_idx = torch.argsort(word_grad_cam_sigmoid, dim=1, descending=True)[:, :_topq]
q2 = torch.scatter(q, 1, word_idx, dataset.dictionary.padding_idx) # word mask
pred, _, _, _ = model(v, q2)
pred_idx = torch.argsort(pred, dim=1, descending=True)[:, :5]
a2 = torch.scatter(a, 1, pred_idx, 0)
# third train
pred, mask, hidden, _ = model(v, q2)
dict_args = {'bias': bias, 'hidden': hidden}
loss2, _ = loss_and_back(loss_fn, model, optim, pred, mask, a2, a_s, a_m, dict_args)
return batch_score, loss1 + loss2
def v_debias(model, optim, loss_fn, v, q, a, a_m, a_s, bias, hint):
# first train
pred, mask, hidden, _ = model(v, q)
dict_args = {'bias': bias, 'hidden': hidden}
loss1, visual_grad = loss_and_back(loss_fn, model, optim,
pred, mask, a, a_s, a_m, dict_args, compute_grad=v)
batch_score = compute_score_with_logits(pred, a.data)
# second train
v_mask = torch.zeros(v.shape[0], v.shape[1], device=v.device)
v_idx = torch.argsort(hint, dim=1, descending=True)[:, :_top_hint]
visual_grad_cam = visual_grad.sum(dim=2)
v_grad = visual_grad_cam.gather(dim=1, index=v_idx)
if _topv == -1:
v_grad_score, _ = v_grad.sort(1, descending=True)
v_grad_score = F.softmax(v_grad_score , dim=1) # why time 10?
v_grad_sum = torch.cumsum(v_grad_score, dim=1)
v_grad_mask = (v_grad_sum <= 0.65).long()
v_grad_mask[:, 0] = 1 # make sure at least mask one object
v_mask_ind = v_grad_mask * v_idx
for x in range(a.shape[0]):
num = len(torch.nonzero(v_grad_mask[x]))
v_mask[x].scatter_(0, v_mask_ind[x, :num], 1)
else:
v_grad_idx = torch.argsort(v_grad, dim=1, descending=True)[:, :_topv]
v_star = v_idx.gather(1, v_grad_idx)
v_mask.scatter_(1, v_star, 1.0)
pred, _, _, _ = model(v, q, v_mask)
pred_idx = torch.argsort(pred, dim=1, descending=True)[:, :5]
a2= torch.scatter(a, 1, pred_idx, 0)
# third train
v_mask = 1 - v_mask
pred, mask, hidden, _ = model(v, q, v_mask)
dict_args = {'bias': bias, 'hidden': hidden}
loss2, _ = loss_and_back(loss_fn, model, optim, pred, mask, a2, a_s, a_m, dict_args)
return batch_score, loss1 + loss2
def train(model, optim, train_loader, loss_fn, tracker, writer, tb_count):
loader = tqdm(train_loader, ncols=0)
loss_trk = tracker.track('loss', tracker.MovingMeanMonitor(momentum=0.99))
acc_trk = tracker.track('acc', tracker.MovingMeanMonitor(momentum=0.99))
dataset = train_loader.dataset
for v, q, hint, type_mask, notype_mask, a, a_m, a_s, bias, q_id in loader:
v = v.cuda().requires_grad_()
q = q.cuda()
a = a.cuda()
a_m = a_m.cuda()
a_s = a_s.cuda()
bias = bias.cuda()
hint = hint.cuda()
type_mask = type_mask.cuda()
notype_mask = notype_mask.cuda()
random_num = random.randint(1, 10)
if random_num <= _qvp:
batch_score, loss = q_debias(model, optim, loss_fn,
dataset, v, q, a, a_m, a_s, bias, type_mask, notype_mask)
else:
batch_score, loss = v_debias(model, optim, loss_fn,
v, q, a, a_m, a_s, bias, hint)
fmt = '{:.4f}'.format
loss_trk.append(loss.item())
acc_trk.append(batch_score.mean())
loader.set_postfix(loss=fmt(loss_trk.mean.value),
acc=fmt(acc_trk.mean.value))
return tb_count
def evaluate(model, dataloader, epoch=0, write=False):
score = 0
results = [] # saving for evaluation
for v, q, _, _, _, a, a_m, a_s, _, q_id in tqdm(dataloader, leave=False):
v = v.cuda()
q = q.cuda()
pred, _, _, _ = model(v, q)
if write:
results = saved_for_eval(dataloader, results, q_id, pred)
batch_score = compute_score_with_logits(pred, a.cuda()).sum()
score += batch_score
score = score / len(dataloader.dataset)
if write:
print("saving prediction results to disk...")
result_file = 'vqa_{}_{}_{}_{}_results.json'.format(
config.task, config.test_split, config.version, epoch)
with open(result_file, 'w') as fd:
json.dump(results, fd)
return score
class CssVQAFeatureDataset(VQAFeatureDataset):
def __init__(self, name, dictionary):
VQAFeatureDataset.__init__(self, name, dictionary)
self.name = name
data_name = 'cp' + config.version \
if config.cp_data else config.version
self.hintscore = json.load(open(os.path.join(
'css-data', data_name+'_hintscore_'+name+'.json'), 'r'))
self.type_mask = json.load(open(os.path.join(
'css-data', data_name + '_type_mask.json'), 'r'))
self.notype_mask = json.load(open(os.path.join(
'css-data', data_name + '_notype_mask.json'), 'r'))
def __getitem__(self, index):
entry = self.entries[index]
if config.in_memory:
features = self.features[entry['image']]
spatials = self.spatials[entry['image']]
else:
features, spatials = self.load_image(entry['image'])
question_id = entry['question_id']
question = entry['q_token']
answer = entry['answer']
q_type = answer['question_type']
labels = answer['labels']
scores = answer['scores']
mask_labels = self.answer_mask[q_type]['mask']
mask_scores = self.answer_mask[q_type]['weight']
hint = torch.tensor(self.hintscore[str(question_id)])
type_mask = 0
notype_mask = 0
if self.name == 'train':
type_mask = torch.tensor(self.type_mask[str(question_id)])
notype_mask = torch.tensor(self.notype_mask[str(question_id)])
target = torch.zeros(self.num_ans_candidates)
target_mask = torch.zeros(self.num_ans_candidates)
target_score = torch.ones(self.num_ans_candidates)
if labels is not None:
target.scatter_(0, labels, scores)
target_mask.scatter_(0, mask_labels, 1.0)
target_score.scatter_(0, mask_labels, mask_scores)
bias = entry['bias'] if 'bias' in entry else 0
return features, question, \
hint, type_mask, notype_mask, \
target, target_mask, target_score, bias, question_id
def __len__(self):
return len(self.entries)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=20,
help='number of running epochs')
parser.add_argument('--loss-fn', type=str, default='Plain',
help='chosen loss function')
parser.add_argument('--num-hid', type=int, default=1024,
help='number of dimension in last layer')
parser.add_argument('--model', type=str, default='baseline_newatt',
help='model structure')
parser.add_argument('--name', type=str, default='exp0',
help='saved model name')
parser.add_argument('--name-new', type=str, default=None,
help='combine with fine-tune')
parser.add_argument('--batch-size', type=int, default=512,
help='training batch size')
parser.add_argument('--fine-tune', action='store_true',
help='fine tuning with our loss')
parser.add_argument('--resume', action='store_true',
help='whether resume from checkpoint')
parser.add_argument('--not-save', action='store_true',
help='do not overwrite the old model')
parser.add_argument('--test', dest='test_only', action='store_true',
help='test one time')
parser.add_argument('--eval-only', action='store_true',
help='evaluate on the val set one time')
parser.add_argument("--gpu", type=str, default='0',
help='gpu card ID')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print(args)
print_keys = ['cp_data', 'version', 'train_set', 'use_mask', 'use_miu', 'ft_lr']
print_dict = {key: getattr(config, key) for key in print_keys}
pprint(print_dict, width=150)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
if 'log' not in args.name:
args.name = 'logs/' + args.name + '.pth'
if args.test_only or args.fine_tune or args.eval_only:
args.resume = True
if args.resume and not args.name:
raise ValueError("Resuming requires folder name!")
if args.resume:
logs = torch.load(args.name)
print("loading logs from {}".format(args.name+ '.pth'))
# ------------------------DATASET CREATION--------------------
dictionary = Dictionary.load_from_file(config.dict_path)
if args.test_only:
eval_dset = CssVQAFeatureDataset('test', dictionary)
else:
train_dset = CssVQAFeatureDataset('train', dictionary)
eval_dset = CssVQAFeatureDataset('val', dictionary)
if config.train_set == 'train+val' and not args.test_only:
train_dset = train_dset + eval_dset
eval_dset = CssVQAFeatureDataset('test', dictionary)
if args.eval_only:
eval_dset = CssVQAFeatureDataset('val', dictionary)
tb_count = 0
writer = SummaryWriter() # for visualization
if not config.train_set == 'train+val' and 'LM' in args.loss_fn:
utils.append_bias(train_dset, eval_dset, len(eval_dset.label2ans))
# ------------------------MODEL CREATION------------------------
constructor = 'build_{}'.format(args.model)
model = getattr(base_model, constructor)(eval_dset, args.num_hid).cuda()
model.w_emb.init_embedding(config.glove_embed_path)
model = nn.DataParallel(model).cuda()
optim = torch.optim.Adamax(model.parameters())
if args.loss_fn == 'Plain':
loss_fn = Plain()
elif args.loss_fn == 'LMH':
loss_fn = LearnedMixinH(hid_size=args.num_hid).cuda()
elif args.loss_fn == 'LM':
loss_fn = LearnedMixin(hid_size=args.num_hid).cuda()
elif args.loss_fn == 'Focal':
loss_fn = FocalLoss()
else:
raise RuntimeError('not implement for {}'.format(args.loss_fn))
# ------------------------STATE CREATION------------------------
eval_score, best_val_score, start_epoch, best_epoch = 0.0, 0.0, 0, 0
tracker = utils.Tracker()
if args.resume:
model.load_state_dict(logs['model_state'])
optim.load_state_dict(logs['optim_state'])
if 'loss_state' in logs:
loss_fn.load_state_dict(logs['loss_state'])
start_epoch = logs['epoch']
best_epoch = logs['epoch']
best_val_score = logs['best_val_score']
if args.fine_tune:
print('best accuracy is {:.2f} in baseline'.format(100 * best_val_score))
args.epochs = start_epoch + 10 # 10 more epochs
for params in optim.param_groups:
params['lr'] = config.ft_lr
# if you want save your model with a new name
if args.name_new:
if 'log' not in args.name_new:
args.name = 'logs/' + args.name_new+ '.pth'
else:
args.name = args.name_new+ '.pth'
eval_loader = DataLoader(eval_dset,
args.batch_size, shuffle=False, num_workers=4)
if args.test_only or args.eval_only:
evaluate(model, eval_loader, write=True)
else:
train_loader = DataLoader(
train_dset, args.batch_size, shuffle=True, num_workers=4)
for epoch in range(start_epoch, args.epochs):
print("training epoch {:03d}".format(epoch))
tb_count = train(model, optim, train_loader, loss_fn, tracker, writer, tb_count)
if not (config.train_set == 'train+val' and epoch in range(args.epochs - 3)):
# save for the last three epochs
write = True if config.train_set == 'train+val' else False
print("validating after epoch {:03d}".format(epoch))
model.train(False)
eval_score = evaluate(model, eval_loader, epoch, write=write)
model.train(True)
print("eval score: {:.2f} \n".format(100 * eval_score))
if eval_score > best_val_score:
best_val_score = eval_score
best_epoch = epoch
results = {
'epoch': epoch + 1,
'best_val_score': best_val_score,
'model_state': model.state_dict(),
'optim_state': optim.state_dict(),
'loss_state': loss_fn.state_dict(),
}
if not args.not_save:
torch.save(results, args.name)
print("best accuracy {:.2f} on epoch {:03d}".format(
100 * best_val_score, best_epoch))