forked from jbloom/SARS-CoV-2_PRJNA612766
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
628 lines (583 loc) · 24.6 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
"""``snakemake`` file that runs analysis.
Written by Jesse Bloom.
"""
import itertools
import os
from snakemake.utils import min_version
min_version('6.3.0')
#----------------------------------------------------------------------------
# Configuration
#----------------------------------------------------------------------------
configfile: 'config.yaml'
# get all samples that are not plasmid
samples = {sample: sample_info for sample, sample_info in
list(config['samples_fasterq_dump'].items()) +
list(config['samples_wget'].items())
if sample_info['patient_group'] != 'plasmid'
}
# get all samples that are plasmid
plasmid_samples = {sample: sample_info for sample, sample_info in
list(config['samples_fasterq_dump'].items()) +
list(config['samples_wget'].items())
if sample_info['patient_group'] == 'plasmid'
}
# map all samples to accessions
samples_to_accessions = {sample: sample_info['accessions'] for
sample, sample_info in
list(samples.items()) + list(plasmid_samples.items())}
#----------------------------------------------------------------------------
# helper functions
#----------------------------------------------------------------------------
def use_wget(wc):
"""For a given accession, do we use `wget`?"""
for sample_d in config['samples_wget'].values():
if wc.accession in sample_d['accessions']:
return 'use_wget'
return 'no_wget'
def comparator_fastas(wc):
"""Get FASTA files for all comparator genomes."""
comparators = []
for key, d in config['comparator_genomes'].items():
if 'genbank' in d:
comparators.append(f"results/genbank/{d['genbank']}.fa")
elif 'gisaid' in d:
comparators.append(f"results/gisaid/{d['gisaid']}.fa")
else:
raise ValueError(f"comparator {key} lacks genbank and gisaid")
return comparators
#----------------------------------------------------------------------------
# Rules
#----------------------------------------------------------------------------
rule all:
input:
'results/pileup/coverage_all.html',
'results/pileup/coverage_all.pdf',
'results/pileup/coverage_region.html',
'results/pileup/coverage_region.pdf',
'results/pileup/samtools_pileup.csv',
'results/early_sequences/annotated_filtered_substitutions.csv',
'results/sra_file_info.csv',
multiext('results/early_sequences/counts', '.html', '.pdf'),
multiext('results/early_sequences/deltadist', '.html', '.pdf'),
multiext('results/early_sequences/deltadist_region', '.html', '.pdf'),
multiext('results/deltadist_jitter', '.html', '.pdf'),
'results/deleted_diffs.tex',
'results/recovered_seqs.fa',
'results/phylogenetics/tree_images/',
'results/pileup/plasmid_mutations.csv',
'results/deleted_seq_alignment_matches.csv',
rule get_ref_genome_fasta:
"""Download reference genome fasta."""
output: fasta="results/ref_genome/ref_genome.fa"
params:
url=config['ref_genome']['fasta'],
name=config['ref_genome']['name'],
add_mutations=config['ref_genome']['add_mutations']
conda: 'environment.yml'
script:
'scripts/get_ref_genome_fasta.py'
rule get_genome_gff:
"""Download reference genome GFF."""
output: gff="results/ref_genomes/ref_genome.gff"
params: url=config['ref_genome']['gff']
conda: 'environment.yml'
shell:
"wget -O - {params.url} | gunzip -c > {output}"
rule download_sra:
"""Download SRA accession to gzipped FASTQ, concat when multiple FASTQs.
Code is complicated because if sample is in `samples_wget` then we
use `wget` to get it, and otherwise `fasterq-dump`.
"""
output:
fastq_dir=temp(directory("results/sra_downloads/{accession}/")),
fastq_gz=protected("results/sra_downloads/{accession}.fastq.gz"),
temp_dir=temp(directory(os.path.join(config['scratch_dir'],
"fasterq-dump/{accession}"))),
sra_file=protected("results/sra_downloads/{accession}.sra"),
params:
use_wget=use_wget,
wget_paths=['https://storage.googleapis.com/nih-sequence-read-archive/run',
'https://sra-pub-sars-cov2.s3.amazonaws.com/run',
'https://sra-pub-run-odp.s3.amazonaws.com/sra']
threads: config['max_cpus']
conda: 'environment.yml'
shell:
"""
if [[ "{params.use_wget}" == "use_wget" ]]
then
echo "using wget for {wildcards.accession}"
wget {params.wget_paths[0]}/{wildcards.accession}/{wildcards.accession} \
-O {output.sra_file} || \
wget {params.wget_paths[1]}/{wildcards.accession}/{wildcards.accession} -O \
{output.sra_file} || \
wget {params.wget_paths[2]}/{wildcards.accession}/{wildcards.accession} -O \
{output.sra_file}
acc="{output.sra_file}"
else
echo "not using wget for {wildcards.accession}"
touch {output.sra_file}
acc="{wildcards.accession}"
fi
fasterq-dump \
$acc \
--skip-technical \
--split-spot \
--outdir {output.fastq_dir} \
--threads {threads} \
--force \
--temp {output.temp_dir}
pigz -c -p {threads} {output.fastq_dir}/*.fastq > {output.fastq_gz}
"""
rule sra_file_info:
"""Get info for ``*.sra`` files using ``vdb-dump``."""
input:
sra_files=expand(rules.download_sra.output.sra_file,
accession=[acc for d in samples.values()
for acc in d['accessions']])
output: csv='results/sra_file_info.csv'
conda: 'environment.yml'
script: 'scripts/sra_file_info.py'
rule preprocess_fastq:
"""Pre-process the FASTQ files by trimming adaptors etc with ``fastp``."""
input:
fastq_gz=rules.download_sra.output.fastq_gz
output:
fastq_gz=temp("results/preprocessed_fastqs/{accession}.fastq.gz"),
html="results/preprocessed_fastqs/{accession}.html",
json="results/preprocessed_fastqs/{accession}.json",
params:
minq=config['minq'],
min_read_length=config['min_read_length'],
threads: config['max_cpus']
conda: 'environment.yml'
shell:
# filter if >40% of read has quality < minq, if read shorter
# than minimum read-length, and polyG / polyX tails.
"""
fastp \
-i {input.fastq_gz} \
-q {params.minq} \
-u 40 \
-l 20 {params.min_read_length} \
--trim_poly_g \
--trim_poly_x \
-o {output.fastq_gz} \
--html {output.html} \
--json {output.json}
"""
rule bwa_mem2_genome:
"""Build ``bwa-mem2`` reference genome."""
input: fasta=rules.get_ref_genome_fasta.output.fasta
output: prefix=directory("results/genomes/bwa-mem2/")
threads: config['max_cpus']
conda: 'environment.yml'
shell:
"""
mkdir -p {output.prefix}
bwa-mem2 index -p {output.prefix}/index {input.fasta}
"""
rule minimap2_genome:
"""Build ``minimap2`` reference genome."""
input: fasta=rules.get_ref_genome_fasta.output.fasta
output: mmi="results/genomes/minimap2.mmi"
threads: config['max_cpus']
conda: 'environment.yml'
shell:
"minimap2 -t {threads} -d {output.mmi} {input.fasta}"
rule align_bwa_mem2:
"""Align using ``bwa-mem2``."""
input:
fastqs=lambda wc: expand(rules.preprocess_fastq.output.fastq_gz,
accession=samples_to_accessions[wc.sample]),
prefix=rules.bwa_mem2_genome.output.prefix,
output:
concat_fastq=temp("results/alignments/bwa-mem2/_{sample}" +
'_concat.fastq.gz'),
sam=temp("results/alignments/bwa-mem2/{sample}.sam"),
unsorted_bam=temp("results/alignments/bwa-mem2/{sample}.bam"),
bam="results/alignments/bwa-mem2/{sample}_sorted.bam",
threads: config['max_cpus']
conda: 'environment.yml'
shell:
# https://www.biostars.org/p/395057/
"""
cat {input.fastqs} > {output.concat_fastq}
bwa-mem2 mem \
-t {threads} \
{input.prefix}/index \
{output.concat_fastq} > {output.sam}
samtools view -b -F 4 -o {output.unsorted_bam} {output.sam}
samtools sort -o {output.bam} {output.unsorted_bam}
"""
rule align_minimap2:
"""Align using ``minimap2``."""
input:
fastqs=lambda wc: expand(rules.preprocess_fastq.output.fastq_gz,
accession=samples_to_accessions[wc.sample]),
mmi=rules.minimap2_genome.output.mmi,
output:
sam=temp("results/alignments/minimap2/{sample}.sam"),
unsorted_bam=temp("results/alignments/minimap2/{sample}.bam"),
bam="results/alignments/minimap2/{sample}_sorted.bam",
threads: config['max_cpus']
conda: 'environment.yml'
shell:
"""
minimap2 -a {input.mmi} {input.fastqs} > {output.sam}
samtools view -b -F 4 -o {output.unsorted_bam} {output.sam}
samtools sort -o {output.bam} {output.unsorted_bam}
"""
rule index_bam:
"""Create BAI file for BAMs."""
input: bam="{bampath}_sorted.bam"
output: bai="{bampath}_sorted.bam.bai"
threads: config['max_cpus']
conda: 'environment.yml'
shell:
"samtools index -b -m {threads} {input.bam} {output.bai}"
rule bam_pileup:
"""Make BAM pileup CSVs with mutations."""
output:
pileup_csv="results/pileup/{sample}/pileup_{aligner}.csv",
input:
bam=lambda wc: {'bwa-mem2': rules.align_bwa_mem2.output.bam,
'minimap2': rules.align_minimap2.output.bam,
}[wc.aligner],
bai=lambda wc: {'bwa-mem2': rules.align_bwa_mem2.output.bam,
'minimap2': rules.align_minimap2.output.bam,
}[wc.aligner] + '.bai',
ref_fasta=rules.get_ref_genome_fasta.output.fasta
params:
ref=config['ref_genome']['name'],
minq=config['minq'],
conda: 'environment.yml'
shell:
"""
python scripts/bam_pileup.py \
--bam {input.bam} \
--bai {input.bai} \
--ref {params.ref} \
--ref_fasta {input.ref_fasta} \
--minq {params.minq} \
--pileup_csv {output.pileup_csv} \
"""
rule consensus_from_pileup:
"""Make consensus sequence from BAM pileup."""
input:
pileup=rules.bam_pileup.output.pileup_csv
output:
consensus="results/consensus/{sample}/consensus_{aligner}.fa"
params:
fasta_header = "{sample}_{aligner}",
min_coverage=config['consensus_min_coverage'],
min_frac=config['consensus_min_frac']
conda: 'environment.yml'
shell:
"""
python scripts/consensus_from_pileup.py \
--pileup {input.pileup} \
--consensus {output.consensus} \
--fasta_header {params.fasta_header} \
--min_coverage {params.min_coverage} \
--min_frac {params.min_frac}
"""
rule get_genbank_fasta:
"""Get fasta from Genbank."""
output: fasta="results/genbank/{genbank}.fa"
conda: 'environment.yml'
shell:
"""
efetch \
-format fasta \
-db nuccore \
-id {wildcards.genbank} \
> {output.fasta}
"""
rule get_gisaid_fasta:
"""Get FASTA from GISAID downloads."""
output: fasta="results/gisaid/{gisaid}.fa"
params: gisaid_dirs=config['gisaid_comparator_dirs']
conda: 'environment.yml'
script:
'scripts/get_gisaid_fasta.py'
rule genome_comparator_alignment:
"""Align genome to comparators."""
input:
genome=rules.get_ref_genome_fasta.output.fasta,
comparators=comparator_fastas
output:
concat_fasta=temp('results/genome_to_comparator/to_align.fa'),
alignment="results/genome_to_comparator/alignment.fa"
conda: 'environment.yml'
shell:
# insert newline between FASTA files when concatenating:
# https://stackoverflow.com/a/25030513/4191652
"""
awk 1 {input} > {output.concat_fasta}
mafft {output.concat_fasta} > {output.alignment}
"""
rule genome_comparator_map:
"""Map sites in viral genome to comparator identities."""
input:
alignment=rules.genome_comparator_alignment.output.alignment
output:
site_map='results/genome_to_comparator/site_identity_map.csv'
params:
comparators=list(config['comparator_genomes'])
conda: 'environment.yml'
script:
'scripts/genome_comparator_map.py'
rule analyze_plasmid_seqs:
"""Analyze pileups for plasmid samples."""
input:
pileups=expand(rules.bam_pileup.output.pileup_csv,
aligner=config['aligners'],
sample=plasmid_samples),
output: plasmid_muts='results/pileup/plasmid_mutations.csv'
params:
consensus_min_frac=config['consensus_min_frac'],
consensus_min_coverage=config['consensus_min_coverage'],
descriptors=[{'aligner': aligner, 'sample': sample}
for aligner, sample in
itertools.product(config['aligners'], plasmid_samples)],
conda: 'environment.yml'
log: notebook='results/logs/notebooks/analyze_plasmid_seqs.ipynb'
notebook: 'notebooks/analyze_plasmid_seqs.py.ipynb'
rule analyze_pileups:
"""Analyze and plot BAM pileups per sample."""
input:
pileups=expand(rules.bam_pileup.output.pileup_csv,
aligner=config['aligners'],
allow_missing=True)
output:
chart="results/pileup/{sample}/interactive_pileup.html",
diffs_from_ref="results/pileup/{sample}/diffs_from_ref.csv",
pileup_csv="results/pileup/{sample}/samtools_pileup.csv",
params:
consensus_min_frac=config['consensus_min_frac'],
consensus_min_coverage=config['consensus_min_coverage'],
descriptors=[{'aligner': aligner} for aligner in config['aligners']],
chart_title="{sample}"
conda: 'environment.yml'
log: notebook="results/logs/notebooks/analyze_pileups_{sample}.ipynb"
notebook: 'notebooks/analyze_pileups.py.ipynb'
rule plot_aggregate_pileup:
"""Plot pileups across all samples."""
input:
pileups=expand(rules.analyze_pileups.output.pileup_csv,
sample=samples),
output:
chart_all_html='results/pileup/coverage_all.html',
chart_all_pdf='results/pileup/coverage_all.pdf',
chart_region_html='results/pileup/coverage_region.html',
chart_region_pdf='results/pileup/coverage_region.pdf',
csv='results/pileup/samtools_pileup.csv',
params:
samples=list(samples),
patient_groups=[d['patient_group'] for d in samples.values()],
region_of_interest=config['region_of_interest'],
aligners=config['aligners'],
ref_name=config['ref_genome']['name'],
consensus_min_coverage=config['consensus_min_coverage'],
conda: 'environment.yml'
log: notebook="results/logs/notebooks/plot_aggregate_pileup.ipynb"
notebook: 'notebooks/plot_aggregate_pileup.py.ipynb'
rule diffs_from_ref:
"""Analyze differences from reference aggregated across deep sequencing samples."""
input:
diffs_from_ref=expand(rules.analyze_pileups.output.diffs_from_ref,
sample=samples),
comparator_map=rules.genome_comparator_map.output.site_map,
output:
diffs_from_ref_stats='results/pileup/diffs_from_ref.csv',
diffs_from_ref_chart='results/pileup/diffs_from_ref.html',
params:
samples=list(samples),
conda: 'environment.yml'
log: notebook='results/logs/notebooks/diffs_from_ref.ipynb'
notebook: 'notebooks/diffs_from_ref.py.ipynb'
rule aggregate_consensus_seqs:
"""Aggregate the consensus sequences from the pileup."""
input:
consensus_seqs=expand(rules.consensus_from_pileup.output.consensus,
aligner=config['aligners'],
sample=samples),
output:
csv='results/consensus/consensus_seqs.csv'
params:
descriptors=[{'aligner': aligner, 'sample': sample} for
aligner, sample in itertools.product(config['aligners'],
samples)]
conda: 'environment.yml'
log: notebook='results/logs/notebooks/aggregate_consensus_seqs.ipynb'
notebook: 'notebooks/aggregate_consensus_seqs.py.ipynb'
rule early_seqs_gisaid_fasta:
"""Get FASTA from GISAID augur download."""
input: lambda wc: config['early_seqs']['gisaid'][wc.sequence_set]
output: fasta="results/early_sequences/{sequence_set}.fa",
params: props=config['early_seq_header_props']
conda: 'environment.yml'
script: 'scripts/gisaid_subdir_to_fasta.py'
rule align_early_seqs:
"""Align all the early sequences to the reference, stripping gaps."""
input:
ref_genome=rules.get_ref_genome_fasta.output.fasta,
gisaid_fastas=expand(rules.early_seqs_gisaid_fasta.output.fasta,
sequence_set=config['early_seqs']['gisaid']),
output:
alignment='results/early_sequences/full_alignment.fa',
concat_early_seqs=temp('results/early_sequences/_concat_early_seqs.fa'),
conda: 'environment.yml'
shell:
# concatenate with newline at end of each file:
# https://stackoverflow.com/a/25030513/4191652
# then align to reference:
# https://mafft.cbrc.jp/alignment/software/closelyrelatedviralgenomes.html
"""
awk 1 {input.gisaid_fastas} > {output.concat_early_seqs}
mafft \
--6merpair \
--keeplength \
--addfragments {output.concat_early_seqs} \
{input.ref_genome} \
> {output.alignment}
"""
rule early_seq_subs:
"""Get substitution mutations from early sequences."""
input:
alignment=rules.align_early_seqs.output.alignment,
ref_genome=rules.get_ref_genome_fasta.output.fasta,
output: csv='results/early_sequences/substitutions.csv'
params:
region_of_interest=config['region_of_interest'],
props=config['early_seq_header_props'],
ignore_muts_before=config['early_seqs_ignore_muts_before'],
ignore_muts_after=config['early_seqs_ignore_muts_after'],
conda: 'environment.yml'
script: 'scripts/early_seq_subs.py'
rule annotate_early_seq_subs:
"""Annotate and filter early sequence substitutions."""
input:
subs_csv=rules.early_seq_subs.output.csv,
comparator_map=rules.genome_comparator_map.output.site_map,
who_china_report_cases_yaml=config['who_china_report_cases'],
early_seqs_to_exclude_yaml=config['early_seqs_to_exclude'],
wuhan_exports_yaml=config['wuhan_exports'],
output: csv='results/early_sequences/annotated_filtered_substitutions.csv'
params:
comparators=list(config['comparator_genomes']),
min_coverage=config['early_seqs_min_coverage'],
max_subs=config['early_seqs_max_subs'],
max_ambiguous=config['early_seqs_max_ambiguous'],
max_date=config['early_seqs_max_date'],
filter_runs=config['early_seqs_filter_runs'],
who_china_report_last_date=config['who_china_report_last_date'],
conda: 'environment.yml'
log: notebook='results/logs/notebooks/annotate_early_seq_subs.ipynb'
notebook: 'notebooks/annotate_early_seq_subs.py.ipynb'
rule outgroup_dist_analysis:
"""Analyze distances to comparator outgroups."""
input:
early_seq_subs=rules.annotate_early_seq_subs.output.csv,
early_seq_alignment=rules.align_early_seqs.output.alignment,
comparator_map=rules.genome_comparator_map.output.site_map,
deleted_diffs=rules.diffs_from_ref.output.diffs_from_ref_stats,
deleted_consensus=rules.aggregate_consensus_seqs.output.csv,
output:
early_seq_counts=multiext('results/early_sequences/counts', '.html', '.pdf'),
early_seq_deltadist=multiext('results/early_sequences/deltadist', '.html', '.pdf'),
early_seq_deltadist_region=multiext('results/early_sequences/deltadist_region', '.html', '.pdf'),
deltadist_jitter=multiext('results/deltadist_jitter', '.html', '.pdf'),
deleted_diffs_latex='results/deleted_diffs.tex',
recovered_seqs='results/recovered_seqs.fa',
alignment_all_fasta='results/phylogenetics/all_alignment.fa',
alignment_all_csv='results/phylogenetics/all_alignment.csv',
deleted_csv='results/phylogenetics/deleted_seqs.csv',
matches_in_gisaid='results/deleted_seq_alignment_matches.csv',
params:
region_of_interest=config['region_of_interest'],
comparators=list(config['comparator_genomes']),
min_frac_coverage=config['min_frac_coverage'],
samples=samples,
aligners=config['aligners'],
ref_genome_name=config['ref_genome']['name'],
ignore_muts_before=config['early_seqs_ignore_muts_before'],
ignore_muts_after=config['early_seqs_ignore_muts_after'],
phylo_last_date=config['phylo_last_date'],
phylo_muts_to_ignore=config['phylo_muts_to_ignore'],
phylo_collapse_rare_muts=config['phylo_collapse_rare_muts'],
phylo_filter_rare_variants=config['phylo_filter_rare_variants'],
phylo_min_frac_called=config['phylo_min_frac_called'],
cat_colors=config['cat_colors'],
subcat_colors=config['subcat_colors'],
conda: 'environment.yml'
log: notebook='results/logs/notebooks/outgroup_dist_analysis.ipynb'
notebook: 'notebooks/outgroup_dist_analysis.py.ipynb'
checkpoint possible_progenitors:
"""Get possible progenitors with smallest distance to outgroup."""
input: all_csv=rules.outgroup_dist_analysis.output.alignment_all_csv
output: progenitors='results/phylogenetics/progenitors.txt'
params: outgroups=list(config['comparator_genomes']),
conda: 'environment.yml'
script: 'scripts/possible_progenitors.py'
def progenitor_trees(_):
with checkpoints.possible_progenitors.get().output.progenitors.open() as f:
progenitors = [line.strip().replace('/', '%') for line in f]
return [f"results/phylogenetics/all_{progenitor}.treefile"
for progenitor in progenitors]
def progenitor_states(_):
with checkpoints.possible_progenitors.get().output.progenitors.open() as f:
progenitors = [line.strip().replace('/', '%') for line in f]
return [f"results/phylogenetics/all_{progenitor}.state"
for progenitor in progenitors]
rule iqtree:
"""Infer ``iqtree`` phylogenetic tree."""
input:
alignment="results/phylogenetics/all_alignment.fa",
output:
treefile="results/phylogenetics/all_{progenitor}.treefile",
ancestral="results/phylogenetics/all_{progenitor}.state",
params:
pre=lambda wc, output: os.path.splitext(output.treefile)[0],
progenitor=lambda wc: wc.progenitor.replace('%', '/')
threads: config['max_cpus']
conda: 'environment.yml'
shell:
"""
iqtree \
-s {input.alignment} \
-pre {params.pre} \
-st DNA \
-m GTR+F \
-czb \
--keep-ident \
-nt {threads} \
-redo \
-seed 2 \
-o {params.progenitor} \
-asr
"""
rule visualize_trees:
"""Visualize the phylogenetic trees."""
input:
trees=progenitor_trees,
states=progenitor_states,
alignment="results/phylogenetics/all_alignment.fa",
all_csv=rules.outgroup_dist_analysis.output.alignment_all_csv,
deleted_csv=rules.outgroup_dist_analysis.output.deleted_csv,
comparator_map=rules.genome_comparator_map.output.site_map,
output: directory('results/phylogenetics/tree_images')
params:
site_offset=config['early_seqs_ignore_muts_before'] - 1,
progenitors=lambda wc, input: [os.path.splitext(os.path.basename(f))[0]
.replace('all_', '')
.replace('%', '/')
for f in input.trees],
outgroups=list(config['comparator_genomes']),
region_of_interest=config['region_of_interest'],
cat_colors=config['cat_colors'],
subcat_colors=config['subcat_colors'],
wuhan_hu_1_add_muts=config['ref_genome']['add_mutations']
conda: 'environment_ete3.yml'
log: notebook='results/logs/notebooks/visualize_trees.ipynb'
notebook: 'notebooks/visualize_trees.py.ipynb'