-
Notifications
You must be signed in to change notification settings - Fork 222
/
Copy pathattention.rs
423 lines (389 loc) · 15 KB
/
attention.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Copyright 2020, Microsoft and the HuggingFace Inc. team.
// Copyright 2022 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::common::dropout::XDropout;
use crate::deberta::{
x_softmax, DebertaConfig, DisentangledSelfAttention, PositionAttentionType,
PositionAttentionTypes,
};
use crate::RustBertError;
use std::borrow::Borrow;
use tch::{nn, Device, Kind, Tensor};
pub fn make_log_bucket_position(
relative_pos: &Tensor,
bucket_size: i64,
max_position: i64,
) -> Tensor {
let sign = relative_pos.sign();
let mid = bucket_size / 2;
let abs_pos = relative_pos.abs().where_scalarother(
&relative_pos
.lt(mid)
.logical_and(&relative_pos.gt(-mid))
.logical_not(),
mid - 1,
);
let log_pos = (((&abs_pos / mid).log() / (((max_position - 1) / mid) as f64).ln()) * (mid - 1))
.ceil()
+ mid;
relative_pos.where_self(
&abs_pos.less_equal(mid),
&(log_pos * sign).to_kind(Kind::Int64),
)
}
pub fn build_relative_position(
query_size: i64,
key_size: i64,
bucket_size: i64,
max_position: i64,
device: Device,
) -> Tensor {
let q_ids = Tensor::arange(query_size, (Kind::Int64, device));
let k_ids = Tensor::arange(key_size, (Kind::Int64, device));
let mut rel_pos_ids = q_ids.unsqueeze(-1) - k_ids.tile([q_ids.size()[0], 1]);
if (bucket_size > 0) & (max_position > 0) {
rel_pos_ids = make_log_bucket_position(&rel_pos_ids, bucket_size, max_position);
}
rel_pos_ids.slice(0, 0, query_size, 1).unsqueeze(0)
}
pub struct DebertaV2DisentangledSelfAttention {
query_proj: nn::Linear,
key_proj: nn::Linear,
value_proj: nn::Linear,
pos_key_proj: Option<nn::Linear>,
pos_query_proj: Option<nn::Linear>,
position_buckets: Option<i64>,
pos_embed_size: Option<i64>,
dropout: XDropout,
num_attention_heads: i64,
pos_att_type: PositionAttentionTypes,
max_relative_positions: Option<i64>,
pos_dropout: Option<XDropout>,
output_attentions: bool,
}
impl DebertaV2DisentangledSelfAttention {
fn transpose_for_scores(&self, x: &Tensor) -> Tensor {
let mut new_shape = x.size();
let _ = new_shape.pop();
new_shape.extend_from_slice(&[self.num_attention_heads, -1]);
let x = x.view(new_shape.as_slice());
x.permute([0, 2, 1, 3])
.contiguous()
.view([-1, x.size()[1], *x.size().last().unwrap()])
}
fn disentangled_att_bias(
&self,
query_layer: &Tensor,
key_layer: &Tensor,
relative_pos: Option<&Tensor>,
relative_embeddings: &Tensor,
scale_factor: f64,
) -> Result<Tensor, RustBertError> {
let mut key_layer_size = key_layer.size();
key_layer_size.reverse();
let mut query_layer_size = query_layer.size();
query_layer_size.reverse();
let calc_relative_pos = if relative_pos.is_none() {
Some(build_relative_position(
query_layer_size[1],
key_layer_size[1],
self.position_buckets.unwrap_or(-1),
self.max_relative_positions.unwrap_or(-1),
query_layer.device(),
))
} else {
None
};
let relative_pos = relative_pos.unwrap_or_else(|| calc_relative_pos.as_ref().unwrap());
let relative_pos = match &relative_pos.dim() {
2 => relative_pos.unsqueeze(0).unsqueeze(0),
3 => relative_pos.unsqueeze(1),
4 => relative_pos.shallow_clone(),
_ => {
return Err(RustBertError::ValueError(format!(
"Expected relative position of dimensions 2, 3 or 4, got {}",
relative_pos.dim()
)))
}
};
// This method only gets called if relative attention is True
let att_span = self.pos_embed_size.unwrap();
let relative_embeddings = relative_embeddings
.slice(0, 0, 2 * att_span, 1)
.unsqueeze(0);
let key_proj = self.pos_key_proj.as_ref().unwrap_or(&self.key_proj);
let query_proj = self.pos_query_proj.as_ref().unwrap_or(&self.query_proj);
let pos_query_layer = self
.transpose_for_scores(&relative_embeddings.apply(query_proj))
.repeat([query_layer.size()[0] / self.num_attention_heads, 1, 1]);
let pos_key_layer = self
.transpose_for_scores(&relative_embeddings.apply(key_proj))
.repeat([query_layer.size()[0] / self.num_attention_heads, 1, 1]);
let mut score = Tensor::zeros([1], (query_layer.kind(), query_layer.device()));
let c2p_pos = if self.pos_att_type.has_type(PositionAttentionType::c2p)
| self.pos_att_type.has_type(PositionAttentionType::p2p)
{
let scale = *pos_key_layer.size().last().unwrap() as f64 * scale_factor;
let c2p_att = query_layer.bmm(&pos_key_layer.transpose(-1, -2));
let c2p_pos = relative_pos.clamp(0, att_span * 2 - 1);
let c2p_att = c2p_att.gather(
-1,
&c2p_pos.squeeze_dim(0).expand(
[
query_layer.size()[0],
query_layer.size()[1],
*relative_pos.size().last().unwrap(),
],
true,
),
false,
);
score = score + c2p_att / scale;
Some(c2p_pos)
} else {
None
};
if self.pos_att_type.has_type(PositionAttentionType::p2c) {
let scale = *pos_query_layer.size().last().unwrap() as f64 * scale_factor;
let r_pos = if key_layer_size[1] != query_layer_size[1] {
build_relative_position(
key_layer_size[1],
key_layer_size[1],
self.position_buckets.unwrap_or(-1),
self.max_relative_positions.unwrap_or(-1),
query_layer.device(),
)
.unsqueeze(0)
} else {
relative_pos.shallow_clone()
};
let p2c_pos = (-r_pos + att_span).clamp(0, 2 * att_span - 1);
let p2c_att = key_layer
.bmm(&pos_query_layer.transpose(-1, -2))
.gather(
-1,
&p2c_pos.squeeze_dim(0).expand(
[query_layer.size()[0], key_layer_size[1], key_layer_size[1]],
true,
),
false,
)
.transpose(-1, -2);
score = score + p2c_att / scale;
}
if self.pos_att_type.has_type(PositionAttentionType::p2p) {
let pos_query = pos_query_layer.slice(2, att_span, None, 1);
let p2p_att = pos_query.matmul(&pos_key_layer.transpose(-1, -2));
let mut expand_size = query_layer.size()[..2].to_vec();
expand_size.append(&mut p2p_att.size().into_iter().skip(2).collect());
let p2p_att = p2p_att.gather(
-1,
&c2p_pos.unwrap().expand(
[
query_layer.size()[0],
query_layer.size()[1],
query_layer.size()[2],
*relative_pos.size().last().unwrap(),
],
true,
),
false,
);
score = score + p2p_att;
}
Ok(score)
}
}
impl DisentangledSelfAttention for DebertaV2DisentangledSelfAttention {
fn new<'p, P>(p: P, config: &DebertaConfig) -> DebertaV2DisentangledSelfAttention
where
P: Borrow<nn::Path<'p>>,
{
let p = p.borrow();
let num_attention_heads = config.num_attention_heads;
let query_proj = nn::linear(
p / "query_proj",
config.hidden_size,
config.hidden_size,
Default::default(),
);
let key_proj = nn::linear(
p / "key_proj",
config.hidden_size,
config.hidden_size,
Default::default(),
);
let value_proj = nn::linear(
p / "value_proj",
config.hidden_size,
config.hidden_size,
Default::default(),
);
let share_attention_key = config.share_att_key.unwrap_or(false);
let pos_att_type = config.pos_att_type.clone().unwrap_or_default();
let relative_attention = config.relative_attention.unwrap_or(false);
let (
max_relative_positions,
pos_dropout,
pos_key_proj,
pos_query_proj,
position_buckets,
pos_embed_size,
) = if relative_attention {
let position_buckets = config.position_buckets.unwrap_or(-1);
let mut max_relative_positions = config.max_relative_positions.unwrap_or(-1);
if max_relative_positions < 1 {
max_relative_positions = config.max_position_embeddings;
}
let pos_ebd_size = if position_buckets > 0 {
position_buckets
} else {
max_relative_positions
};
let pos_dropout = Some(XDropout::new(config.hidden_dropout_prob));
let (pos_key_proj, pos_query_proj) = if !share_attention_key {
let pos_key_proj = if pos_att_type.has_type(PositionAttentionType::c2p)
| pos_att_type.has_type(PositionAttentionType::p2p)
{
Some(nn::linear(
p / "pos_key_proj",
config.hidden_size,
config.hidden_size,
Default::default(),
))
} else {
None
};
let pos_query_proj = if pos_att_type.has_type(PositionAttentionType::p2c)
| pos_att_type.has_type(PositionAttentionType::p2p)
{
Some(nn::linear(
p / "pos_query_proj",
config.hidden_size,
config.hidden_size,
Default::default(),
))
} else {
None
};
(pos_key_proj, pos_query_proj)
} else {
(None, None)
};
(
Some(max_relative_positions),
pos_dropout,
pos_key_proj,
pos_query_proj,
Some(position_buckets),
Some(pos_ebd_size),
)
} else {
(None, None, None, None, None, None)
};
let dropout = XDropout::new(config.attention_probs_dropout_prob);
let output_attentions = config.output_attentions.unwrap_or(false);
DebertaV2DisentangledSelfAttention {
query_proj,
key_proj,
num_attention_heads,
pos_att_type,
max_relative_positions,
pos_dropout,
dropout,
output_attentions,
value_proj,
pos_key_proj,
pos_query_proj,
position_buckets,
pos_embed_size,
}
}
fn forward_t(
&self,
hidden_states: &Tensor,
attention_mask: &Tensor,
query_states: Option<&Tensor>,
relative_pos: Option<&Tensor>,
relative_embeddings: Option<&Tensor>,
train: bool,
) -> Result<(Tensor, Option<Tensor>), RustBertError> {
let query_states = query_states.unwrap_or(hidden_states);
let query_layer = self.transpose_for_scores(&query_states.apply(&self.query_proj));
let key_layer = self.transpose_for_scores(&query_states.apply(&self.key_proj));
let value_layer = self.transpose_for_scores(&query_states.apply(&self.value_proj));
let mut scale_factor = 1;
if self.pos_att_type.has_type(PositionAttentionType::c2p) {
scale_factor += 1;
}
if self.pos_att_type.has_type(PositionAttentionType::p2c) {
scale_factor += 1;
}
if self.pos_att_type.has_type(PositionAttentionType::p2p) {
scale_factor += 1;
}
let scale = ((query_layer.size().last().unwrap() * scale_factor) as f64).sqrt();
let mut attention_scores = query_layer.bmm(&key_layer.transpose(-1, -2)) / scale;
if let (Some(pos_dropout), Some(rel_embeddings)) = (&self.pos_dropout, relative_embeddings)
{
let rel_embeddings = rel_embeddings.apply_t(pos_dropout, train);
let rel_att = self.disentangled_att_bias(
&query_layer,
&key_layer,
relative_pos,
&rel_embeddings,
scale_factor as f64,
)?;
attention_scores = attention_scores + rel_att;
}
let mut reverse_attention_scores_size = attention_scores.size();
reverse_attention_scores_size.reverse();
attention_scores = attention_scores.view([
-1,
self.num_attention_heads,
reverse_attention_scores_size[1],
reverse_attention_scores_size[0],
]);
let attention_probs =
x_softmax(&attention_scores, attention_mask, -1).apply_t(&self.dropout, train);
let mut reverse_attention_probs_size = attention_probs.size();
reverse_attention_probs_size.reverse();
let context_layer = attention_probs
.view([
-1,
reverse_attention_probs_size[1],
reverse_attention_probs_size[0],
])
.bmm(&value_layer);
let mut reverse_context_layer_size = context_layer.size();
reverse_context_layer_size.reverse();
let context_layer = context_layer
.view([
-1,
self.num_attention_heads,
reverse_context_layer_size[1],
reverse_context_layer_size[0],
])
.permute([0, 2, 1, 3])
.contiguous();
let mut new_context_layer_shape = context_layer.size();
let _ = new_context_layer_shape.pop();
let _ = new_context_layer_shape.pop();
new_context_layer_shape.push(-1);
let context_layer = context_layer.view(new_context_layer_shape.as_slice());
let attention_probs = if self.output_attentions {
Some(attention_probs)
} else {
None
};
Ok((context_layer, attention_probs))
}
}